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Abstract

Microwave imaging is an important tool for security screening applications. Low-

power microwave radiation is used to safely and noninvasively form high resolution

images of people to screen for concealed threat objects. This is because microwaves

easily pass through clothing and strongly reflect off skin and many materials of in-

terest.

Image resolution improves with large aperture size and bandwidth. Commercial

imaging systems realize large apertures two ways; as phased array of antennas, or

synthetically by mechanically scanning antennas. In both cases long acquisition times

permit only one person to be screened at a time while holding a pose. Security

checkpoints employing these systems suffer low screening throughput and present

a bottleneck that endangers people. Economically increasing screening throughput

requires allowing people to move unimpeded while being imaged.

Computational imaging with a frequency diverse aperture provides a path for-

ward. Frequency diverse apertures are composed of antennas designed to have spa-

tially uncorrelated radiation patterns as a function of frequency. A transceiver drives

the antennas with a frequency sweep to rapidly take uncorrelated measurements of

a scene. A physical model relating transceiver measurements to scene reflectivity is

then numerically solved to form an image. In this way hardware complexity is traded

for modeling complexity, leveraging computing technology. The resulting system is

inexpensive, modular, flat, and has no moving parts.

An experimental microwave imaging system consisting of a frequency diverse aper-

ture driven by a MIMO transceiver operating from 17.5 GHz to 26.5 GHz is described.

The imaging system has 24 Tx antennas, 72 Rx antennas, and samples 100 frequency

points giving 172800 possible measurement combinations. The transceiver uses an
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orthogonal coding strategy to acquire complete sets of measurements at 7 Hz, en-

abling a walk-while-scan modality. Depth cameras are integrated to inform image

reconstruction and analysis. Several acceleration strategies are pursued to reduce

image reconstruction times. A comprehensive simulation platform is used to opti-

mize system configuration. Near real-time imaging of multiple people in motion is

demonstrated.

Images of people walking present unique challenges for automated threat detec-

tion. A deformable stitching model for combining images is developed, and a frame-

work for applying the stitching model is proposed.
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Chapter 1

Introduction

Figure 1.1: Experimental Walk-While-Scan Imaging System — A modular array of

stationary antennas images a scene. The antenna radiation patterns have low spa-

tial correlation as a function of frequency. Backscattered transceiver measurements

between pairs of antennas encodes scene information related to a physical forward

model. Images are reconstructed by inverting the model.

1



1.1 Background

Figure 1.2: Microwave Imaging

An important application at the forefront of 3D imaging and data processing

technology is microwave imaging for security screening [SMH01]. Microwaves are

a form of non-ionizing electromagnetic waves with a wavelength from about 1mm

to 1m. Microwaves around 1cm and less are particularly well suited for security

screening people because they safely penetrate clothing, strongly reflect off skin and

concealed threat objects, and can form high-resolution images (Fig. 1.2) [SMC+96].

A simplified overview of microwave imaging is presented in Fig. 1.3. A microwave

imaging system consists of two core components: a transceiver and antennas. The

transceiver (also called a radio and abbreviated xcvr) is an instrument used to take

2



Figure 1.3: Microwave Imaging

radio frequency (RF) measurements (Fig. 1.3.a). Its job is to drive a transmit

antenna (tx) with an RF signal at a set frequency, and to compare that signal with

the received signal collected by a receive antenna (rx). The received signal depends

on the scene in a complex way, but the result is always just a change in amplitude

and shift in phase from the drive signal. This is encoded in a single complex number

S21 whose magnitude is the ratio between the transmitted and received signals, and

whose phase is the difference between the signals. The antennas form the aperture.

Resolution is closely related to aperture size.

Microwave imagers require large apertures to form images of people with high

resolution. Commercially available systems accomplish this one of two ways. One

way is with a phased array, a dense array of stationary antennas each with amplitude

and phase control (Fig. 1.4.a) [RS16]. Phased arrays set the gold standard for imaging

performance. However, phased arrays are expensive because of the large amount of

3



Figure 1.4: QPS and ProVision

RF hardware required to implement them, and0 they are costly to operate because

the RF hardware consumes a great deal of power. The second way is to synthesize

a large aperture by mechanically scanning a smaller aperture in a technique called

synthetic aperture radar (SAR) (Fig. 1.4.b) [SHM+16]. The smaller aperture is more

economical, however the mechanical scanning modality forces people to stop and pose

while being scanned.

Both types of commercial systems introduce a bottleneck at security checkpoints.

Phased array systems cannot be deployed in large numbers due to cost, and SAR

systems can only scan one person at a time. In both cases security checkpoints are

overwhelmed by long lines outside of a secure area. Such bottlenecks pose security

risks to both the people in the lines and the infrastructure where these checkpoints

are situated. To alleviate this particular bottleneck, it is necessary to break with

existing solutions and aim to implement a walk-while-scan imaging system [GA16].
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Figure 1.5: Computational Imaging [HDM+13]

Computational imaging provides a path forward. Computational imaging is a

generalization of what it means to do imaging. In the past, imaging devices were

responsible for both measuring data and forming an image. For example, a camera

lens system (1.5.a) focuses a tiny image of a scene onto film with a lens system. The

lens system forms the image, while the film records the image. There is no funda-

mental reason for these tasks to be combined. Indeed, by decoupling measurement

from image formation, the design space of imaging sensors is drastically increased,

but at the expense of needing a physical model and computer to reconstruct an image

from measurement data. An example of this is a coded aperture (Fig. 1.5.b). Coded

apertures use a single pixel to measure incoming light that is passed through random

masks. If the masks are known and the measurement process can be modeled, then

it is possible to reconstruct the same image a normal camera would capture, even

though only a single pixel is used. Somehow a small amount of information about

the entire scene is encoded in each measurement. A different take on this concept

is structured illumination (1.5.c), where instead of passing incoming light through a
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mask, a scene is illuminated with light though a mask and the reflection measured.

It is important for a computational imaging model to roughly match the number of

non-zero image components to the number of measurements taken to reconstruct an

image. Compressive sensing is when the number of measurements is less than the

number of non-zero image elements, but in this case prior information is required to

constrain the image.

Figure 1.6: Metaimager Concept [LMH+13]

Leaning on computational imaging, a walk-while-scan microwave imaging system

based on structured illumination was proposed (Fig. 1.6). The original vision was to

use antennas with complicated radiation patterns suitable for structured illumination,

design the radiation patterns of these antennas to be sensitive to small changes in

frequency, and then to drive such antennas with a rapid frequency sweep. Structured

illumination patterns are indexed by frequency, so the antenna doesn’t need to be

reconfigured. This simple idea was the genesis of the DHS metaimager project.
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1.2 Imaging System Overview

An experimental walk-while-scan microwave imaging system was engineered with

the goals of being inexpensive, modular, scalable, and flat [PEAG+18] (Fig. 1.1).

Broadly speaking, the imager is a structured illumination imaging system operating

in K band [17.5, 26.5]GHz. The innovative design of the antennas and radio are

critical to the operation of the system. The antennas are designed to have spatially

uncorrelated radiation patterns w.r.t. frequency to provide structured illumination

patterns indexed by frequency. The radio drives a tx antenna at a single frequency to

illuminate a scene, and measures the reflected signal with a rx antenna. Frequencies

are electronically stepped to rapidly probe a scene with different radiation patterns,

and measurements are taken between different tx-rx pairs. The measurement process

is physically modeled, and with enough unique measurement information, an image

is reconstructed by inverting the measurement model on a computer.

This section highlights key features of the experimental imaging system. The

qualities of the antennas, radio, and imaging model are summarized. In-depth infor-

mation on these topics is found in later chapters or external works.

1.2.1 Frequency Diverse Antennas

Frequency diverse antennas are antennas engineered to have spatially uncorre-

lated radiation patterns w.r.t. driving frequency f . This type of antenna is suitable

for RF structured illumination. The sensitivity of a frequency diverse antenna’s radi-

ation pattern to changes in f is of critical design importance to maximize the amount

of useful information that can be measured by the antenna. This is because there

is only a finite amount of bandwidth B available to sample, and similar radiation
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patterns encode redundant information. The sensitivity of an antenna’s radiation

pattern is related to the antenna’s quality factor Q. Q is defined in several related

ways, but in general can be thought of characterizing how strongly something res-

onates. The higher the Q, the more sensitive an antenna’s radiation patterns are to

changes in f , and the more useful measurements can be packed into the same B. The

easiest way to achieve high Q is with a resonant cavity, and the simplest example of

a resonant cavity in the RF is a metal box. A resonant cavity can be made into an

antenna by poking holes in the cavity’s walls that allow radiation to escape.

Figure 1.7: Frequency Diverse Antenna Explode

In line with the goals of inexpensive and flat system hardware, cavity-backed

metasurface antennas were designed and built using printed circuit board (PCB)

technology (Fig. 1.7). PCB is made from a slab of dielectric insulator sandwiched

between two copper sheets. The sheets form the top and bottom of the cavity. Vias

(holes) are drilled into the PCB and then metalized to electrically connect the top
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and bottom of the board. In RF applications, a line of metalized vias at a deeply

sub-wavelength pitch act as a metal wall. These via fences are used to realize the

walls of the cavity. Weakly resonant slots are cut into the top of the cavity to leak

out radiation.

Figure 1.8: Frequency Diverse Antenna Cutaway

The antenna is driven by a coax port installed on the bottom, as seen in Fig. 1.8.

The coax pin extends into a via drilled through the PCB cavity, and it is soldered to

an impedance matching element on the top of the antenna that is electrically isolated

from the surrounding copper. When the pin is driven with an electric current Je,

cylindrical TEMρ waves radiate from the pin into the parallel plate waveguide of

the PCB (Fig. 1.9.a). The H field is in the plane of the PCB, and the E field is

perpendicular to the plane. The antenna dimensions and driving frequency are such

that only the lowest order mode exists. The driving waves propagate away from

the coax pin and eventually encounter the via fence. Currents are excited in the
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metalized vias, which in turn radiate cylindrical waves in the same fashion as the

coax pin. Multiple reflections mix the fields in the cavity in a complicated way that

is sensitive to changes in f .

Figure 1.9: Frequency Diverse Antenna Slots

The fields inside the cavity leak out of slots cut into the top of the cavity. A short

metal wire will polarize like an electric dipole p, so per Babinet’s principle a slot will

polarize like a magnetic dipole m (Fig. 1.9.b). The H field in the cavity couples

to a slot and induces a magnetic dipole moment that depends on the anisotropic

polarizability αm of the slot (Fig. 1.9.c). A dipole over a metal plane has a simple

radiation pattern (Fig. 1.10), so most of the field variation comes from the mode-

mixing effect of the cavity randomizing the phase of induced dipoles.

An illustration of an experimental PCB frequency diverse antenna is shown in

Fig. 1.11.a. The design of the antenna is the result of design constraints and a

long sequence of engineering considerations. Questions concerning antenna size and

radiating element shape, polarization, count, and placement had to be answered.
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Figure 1.10: Magnetic Dipole

This was accomplished by a combination of qualitatively accurate simulations and

rapid prototyping. The design has been well optimized given the design constraints.

However given different constraints (i.e. cost being of no concern) higher performance

antennas are possible.

Frequency diverse antennas are assembled into an array to form a frequency di-

verse aperture (Fig. 1.1, Fig. 1.11.b). Like the antenna design, the aperture design

is the result of a long sequence of engineering considerations and design constraints.

The size of the aperture, the number of tx and rx antennas, and the distribution of

antennas all influence imaging performance.

1.2.2 Transceiver

The frequency diverse aperture is driven by a transceiver (radio). The design of the

radio is critical in achieving a fast enough a shutter speed with high enough SNR
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Figure 1.11: Frequency Diverse Aperture

to acquire walk-while-scan data. The demands of the radio are challenging; it must

operate over the entirety of K band from [17.5, 26.5]GHz, sweep frequency quickly, and

be inexpensive. A sequence of radio design generations based on stepped frequency

zero IF transceivers satisfied the demands of the experimental imaging system.

An exceptionally simple radio design is a Zero IF transceiver (Fig. 1.12). This

type of radio has an intermediate frequency at DC, which allows economizing on

RF components needed in other RF systems, however the design suffers from self-

jamming issues that must be mitigated. At the heart of the zero IF transceiver is a

programmable phased locked loop (PLL) that generates a sinusoidal RF signal at a

programmed frequency. The PLL is used as the local oscillator (LO) of the radio.

The LO is split into a test arm and reference arm. The test arm is amplified and

then exits through the tx port, while the reference arm leads to the LO input of a

demodulator. The signal from the rx port is amplified and leads into the RF input
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Figure 1.12: Zero IF Transceiver

of the demodulator. Inside the demodulator are a pair of mixers. Mixers function

to multiply signals. In this case the LO reference signal and a 90◦ phase shifted

copy are multiplied by the RF signal. In practice the RF signal will be a signal from

the rx port excited by the tx port, and therefore will have the same frequency as

the LO. The product of two sinusoids at the same frequency results in a sinusoid at

twice the frequency with a DC offset. The DC output of the mixers is sampled by

a pair of analog to digital converters (ADCs) and labeled I for in phase and Q for

quadrature. The high-frequency term simply averages to zero over the time scale of a

single ADC sample conversion. I and Q by themselves don’t mean much, but when

compared against a calibration measurement, encode the magnitude ratio and phase

difference between the transmitted tx port signal and the received rx port signal, the

S21 parameter!

A two port zero IF transceiver can drive an array if there is a RF switching network
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connecting the radio to the aperture. However this arrangement is only suitable for

static scenes because of the long acquisition times involved with switching through

all tx-rx combinations in a large array. A parallel system is needed for real-time data

acquisition.

Figure 1.13: OCAI

Orthogonal Coded Active Illumination (OCAI) is a stepped frequency

transceiver design capable of massive parallel data acquisition by using a multiplex-

ing strategy (Fig. 1.13). The OCAI radio is a modular multiple-in multiple-out

(MIMO) device that simultaneously transmits on 24 tx ports and receives on 72 rx

ports when operating. The basic building blocks of the OCAI radio are zero IF radios

that are distributed across several RF modules. The key addition to the OCAI radio

are phase shifters before tx ports. These phase shifters enable phase shift keying

strategies. OCAI adopts a binary phase shift keying (BPSK) strategy. Every tx

is assigned a unique 32-bit orthogonal balanced binary code. A measurement at a
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single frequency for the entire array takes 32 parallel submeasurements. For the i-th

submeasurement, each tx phase shifter is set to the 0◦ or 180◦ depending on the i-th

bit in its code. Orthogonal codes enable the measurements to be multiplexed, while

balanced codes have the special property of mitigating constant self-jamming effects.

The submeasurements are demultiplexed using the tx phase codes to recover the

individual tx-rx pair measurements. Furthermore, each measurement is effectively

averaged 32 times, providing outstanding SNR. In fact, this design does not need an

amplifier on the rx ports.

The experimental OCAI system achieved a data acquisition rate of 7Hz in the

laboratory with 24 tx and 72 rx antennas sampled at 100 frequencies for 172800

measurements. This was fast enough to image people walking through the system.

However if a person moves too fast, the scene will evolve an appreciable amount over

the finite acquisition time and break the image. A path to 100Hz possible.

1.2.3 Imaging Model

Computational imaging requires a measurement model that connects the physical

property being imaged to the sensor measurement. Given a measurement model and

a measurement, the model is inverted on a computer to reconstruct an image of the

property. Together the measurement model and inversion algorithm constitute the

imaging model.

The relevant elements of the measurement model are illustrated in Fig. 1.14. Let

the i-th measurement identify a tx, rx, and frequency combination. The physical

measurement process is as follows. An electric current at frequency fi drives the i-th

tx antenna, exciting currents on the surface of the antenna which radiate electromag-
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Figure 1.14: g = Hf

netic waves that illuminate a scene. The incident electric field Etx,i excites currents

in the scene per Ohm’s law Je = κeE for electric conductivity distribution κe. The

scene currents in turn radiate their own waves. Waves from the scene excite currents

on the i-th rx antenna. Finally, the radio compares the amplitude and phase of the

excitation signal and received signal. Advanced electromagnetic theorems reveal that

the coupling of a point in space to any given measurement is proportional to the dot

product of the tx and rx electric fields multiplied by κe (the rx field Erx,i is the same

field as if the rx were a tx). To make the model linear, the Born approximation

is invoked to ignore reflections when considering Ohm’s law for the scene such that

Je ≈ κeEtx,i. The problem is discretized into a linear system by subdividing the

imaging volume into voxels, resulting in

g = Hf (1.1)

where f are voxel conductivities organized into a vector, g are the radio measure-

ments organized into a vector, and H is the measurement matrix that encodes the
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physical measurement model connecting f to g.

The linear measurement model is used to reconstruct images. However the mea-

surement model is the wrong way around; it maps a scene vector to a measurement

vector. To solve for a scene vector given a measurement vector, the model must be

inverted. H can be very large, on the order of 1× 105 elements on a side, so the only

real options for real-time reconstruction are applying a matched filter or iterative

linear solver. The simplest is matched filter, which only requires a single application

of the conjugate transpose of the forward model. This works because it is essentially

correlating the fields with the measurements. Matched filter is effectively the first

step in more sophisticated iterative solvers. Two solvers, conjugate gradient and

generalized minimum residual (GMRES), produce the highest quality images with a

relatively small number of iterations.

Having the imaging model in hand is still not enough to reconstruct experimental

images. Two additional tasks must first be complete prior to imaging. The first tasks

is antenna registration, which is the process of estimating the spatial relationship

between all of the antennas in an imaging system. This process is crucial to correctly

model the fields inside an imaging volume. Registration is actually a deeper task

than just registering the antennas. Frequency diverse antennas are experimentally

measured by near field scan (NFS) to model their fields. It is necessary to also register

the NFS with the antenna.

The second task is calibration. Calibration aims to measure and remove the

internal response of the radio hardware itself from measurements. This includes the

effects of any hardware not already considered in the model (i.e. cables). A variety of

calibration measurement techniques and algorithms were researched to address this
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issue. The final experimental system used a calibration object, where a calibration

object was simulated and experimentally measured, and the discrepancies between

simulation and measurement are attributed to the sought for calibration. Algorithms

to clean up the measured calibration worked to varying effect.

As mentioned, the measurement matrix H can be very large. This is partially

out of necessity because it is not feasible to compute H in real-time. However this

also makes real-time image reconstruction a daunting task. The measurement model

as formulated can be reduced in size if voxels are known to be empty a priori. A

clever and economical idea is to incorporate depth cameras into the RF imaging

system to identify a region of interest (ROI) that includes the location of foreground

voxels. This idea requires the depth cameras be registered with the imaging volume, a

method to generate a ROI, and a way to apply the ROI during image reconstruction.

Using a ROI, along with several other acceleration strategies, made it possible to

reconstruct images almost in real-time.

This high level components of the experimental walk-while-scan imaging system

are summarized in Fig. 1.15. A frequency diverse aperture is driven by the OCAI

radio in a massively parallel mode of operation way. The aperture probes an imag-

ing volume, over which a measurement model is built. Depth cameras identify the

location or foreground objects and supplies a ROI to the reconstruction algorithms.

Reconstruction uses the depth prior to prune the measurement matrix to a manage-

able size, and then numerically solves the reduced system on a workstation to arrive

at an estimate for the scene vector f .

An experimental image produced by the imaging system is illustrated in Fig. 1.2.

This image demonstrates the unique capability of imaging two people at once. This
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Figure 1.15: Metaimager System

is not possible with commercial imaging systems. This image also illustrates an issue

common to all microwave imaging systems; specularity. Many objects of interest are

conductive and smooth on the scale of microwaves, and therefore reflect like a mirror.

Effectively images are limited to the specular highlights of surfaces that reflect waves

directly back at the aperture. Commercial systems mitigate this issue with a favorable

imaging environment or by taking measurement data from all directions. However

a walk-while-scan system doesn’t have this luxury. Specularity and deformation of

the scene complicates image analysis and automated threat detection (ATD). Post

processing of image data is likely necessary before ATD can be applied.

The success of the imaging system design critically depended on a comprehensive

simulation platform. The ability to create and evaluate virtual imaging systems was

an invaluable tool for rapid and cost-effective research. This extends to the future

image analysis endeavors. The prospect of generating synthetic training data for
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machine learning enabled tasks like ATD is an exciting avenue of future research.

1.2.4 Specifications

The development of the imaging system was a precision engineering effort informed

by careful investigation of quantitative metrics. For instance, image resolution is of

central concern for any imaging application, and it was important that theoretical

understanding matched reality. Resolution targets were useful in this respect (Fig.

1.16). A short list of other important system metrics is collected in Tab. 1.1.

Figure 1.16: Resolution Target

1.3 Contributions

The experimental imaging system was the product of a massive group research effort.

At the peak of the project about 50 people were laboring to make the imaging system a
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Table 1.1: Imager Specifications

Parameter Demo B

Band [17.5, 26.5]GHz

Radio OCAI

Number of Tx 24

Number of Rx 72

Number of Frequencies 100

Aperture Size 2.1× 2.0m2

Field of View ±60◦,±60◦

Resolution FWHM < 0.5◦

Resolution @ 1m 0.7cm

Range 0− 1.6m static

Range Resolution 1.6cm

Frame Rate 7Hz

Image Acquisition Time 0.14s

Image Reconstruction Time 0.24s (FAMI)

Total Modes 172800

Antenna Q 330

Radio Carrier Rejection 40dB

Radio Output Power 13dBm
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reality. I had the privilege of being the experimental system integrator, and therefore

was at the intersection of all the work being done on the project. In this role I was

both directly and indirectly involved with many aspects of the project. My major

contributions and collaborations that were critical to the success of the project are

as follows:

• Integrated experimental imaging system

• Developed constellation registration (Ch. 4)

• Collaborated on NFS registration (Ch. 4)

• Developed array registration (Ch. 4)

• Collaborated on calibration

• Developed depth camera registration (Ch. 5)

• Developed ROI (Ch. 5)

• Developed rigid linear stitching (Ch. 6)

• Developed rigid rotation stitching (Ch. 6)

• Developed rigid skeleton stitching (Ch. 6)

• Developed skeleton stitching model (Ch. 6)

Although not intentional, registration was a common theme in my work.
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Chapter 2

Forward Model

A sensor forward model is a physical model of a sensor’s measurement process.

Given an input scene configuration, a forward model predicts the output of a sensor.

Possessing a forward model is key for posing and solving the image reconstruction

problem (chapter 3), network calibration , and simulation .

Conceptually, the basic metaimager measurement illuminates a scene with a trans-

mit antenna and measures the reflection with a receive antenna (figure 2.1). A

transceiver generates a signal at frequency ω and compares the the magnitude and

phase of the transmitted and received signals, represented by S-parameter S21. This

process is rapidly repeated with spatially uncorrelated radiation patterns to encode

scene information. With enough measurements, a computer can form an image.

Several electromagnetic theorems and approximations are used in formulating a

tractable forward model for the metaimager. This chapter assembles a forward model

from first principles, starting with Maxwell’s equations. Electromagnetic reciprocity

is then derived to model the coupling between antennas and a scene in terms of

sources and fields. A scene model and interpretation is given. An antenna model and

associated radiation model are developed. Finally the above concepts are combined

to derive a linear forward model.
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Figure 2.1: Metaimager - General idea

2.1 Maxwell’s Equations

Consider Maxwell’s equations in matter in differential form (appendix A)

∇× E = −∂B
∂t

∇×H = Jf + ∂D
∂t

∇ · D = ρf

∇ · B = 0

BCs:



n̂×∆E = 0

n̂×∆H = Kf

n̂ · ∆D = σf

n̂ · ∆B = 0

(2.1)

with field definitions

D ≡ ε0E + P (2.2)

H ≡ 1

µ0

B−M (2.3)

and the electromagnetic (Lorentz) force law

f e = E + v ×B. (2.4)
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This formulation of Maxwell’s equations incorporates dipolar material effects at the

expense of introducing definitions 2.2 and 2.3, which must be supplemented by con-

stitutive equations for P and M. Consequently electric sources are classified as either

free or bound

ρ = ρf + ρb = ρf −∇ · P (2.5)

J = Jf + Jb + Jp = Jf +∇×M +
∂P

∂t
. (2.6)

Bound sources arise in matter from constituent electric charges responding to forces

and establishing electric and magnetic dipole moment densities P and M. Free

sources simply are not bound sources. Higher-order multipole effects may be isolated,

but dipole effects dominate in most natural materials.

Maxwell’s equations can be made symmetric in electric and magnetic quantities by

introducing magnetic source charges and currents. There is no observational evidence

for magnetic sources, but the concept is theoretically valuable. Based on dimensional

analysis a consistent way to introduce magnetic charge is in terms of the SI derived

unit of magnetic flux, the Weber, defined as Wb ≡ V · s. Equations 2.1 then become

∇× E = −Jmf − ∂B
∂t

∇×H = Jef + ∂D
∂t

∇ · D = ρef

∇ · B = ρmf

BCs:



n̂×∆E = −Kmf

n̂×∆H = Kef

n̂ · ∆D = σef

n̂ · ∆B = σmf

(2.7)

where subscripts e and m differentiate electric and magnetic sources respectively.

The symmetry of these equations gives rise to the principle of duality (appendix A),

where the electric and magnetic quantities of any derived equation can be exchanged

in a prescribed way to yield a valid dual equation.
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For linear media, P and M are in general related to E and H by electric and

magnetic susceptibility tensors χe and χm and magnetoelectric tensors χem and χme

P = ε0χeE + χemH (2.8)

µ0M = µ0χmH + χmeE. (2.9)

Most natural materials are adequately described as non-magnetoelectric where χem =

0 and χme = 0, and equations 2.8 and 2.9 reduce to

P = ε0χeE (2.10)

M = χmH. (2.11)

Furthermore at millimeter wave frequencies human skin and many other materials of

interest for security screening are isotropic, so the tensors can be written as scalars

P = ε0χeE (2.12)

M = χmH. (2.13)

Under these assumptions, definitions 2.2 and 2.3 for D and H simplify to

D = ε0E + P = ε0E + [ε0χeE] = ε0[1 + χe]E = ε0εrE = εE (2.14)

B = µ0[H + M] = µ0[H + [χmH]] = µ0[1 + χm]H = µ0µrH = µH (2.15)

where the permittivity ε and permeability µ are

ε = ε0εr = ε0[1 + χe] (2.16)

µ = µ0µr = µ0[1 + χm]. (2.17)
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Eliminate D and B from the symmetric Maxwell’s equations 2.7 by inserting consti-

tutive equations 2.14 and 2.15 to obtain

∇× E = −Jmf − ∂
∂t

[µH]

∇×H = Jef + ∂
∂t

[εE]

∇ · [εE] = ρef

∇ · [µH] = ρmf

BCs:



n̂×∆E = −Kmf

n̂×∆H = Kef

n̂ · ∆[εE] = σef

n̂ · ∆[µH] = σmf

. (2.18)

Substantial analytic simplification can be made for linear time-invariant (LTI)

systems where material properties are both linear and constant in time

∂ε

∂t
= 0 (2.19)

∂µ

∂t
= 0. (2.20)

While a primary goal of the metaimager is the ability to image moving scenes, scenes

of walking people evolve on time scales much longer than the propagation of light

across the scene and measurement process, and can be modeled as time-invariant.

LTI system eigenfunctions are complex exponentials with angular frequency ω = 2πf .

Field quantities of these solutions vary sinusoidally at the given frequency, and are

described as time-harmonic. For example, a time-harmonic electric field has the form

E(r, t) = x̂Ex(r) cos(φx(r) + ωt) + ŷEy(r) cos(φy(r) + ωt) + ẑEz(r) cos(φz(r) + ωt)

(2.21)

where Ei(r) and φi(r) are the amplitude and phase functions of the i-th electric field

component. Using Euler’s identity

ejφ = cosφ+ j sinφ (2.22)
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and the definition for the real part of a complex number

Re(z̃) ≡ 1

2
[z̃ + z̃∗] (2.23)

the time-harmonic electric field can be written in terms of complex-valued phasors

E(r, t) = Re(Ẽ(r)T̃ (t)) (2.24)

where the spatial part is defined as

Ẽ(r) ≡ x̂Ex(r)ejφx(r) + ŷEy(r)ejφy(r) + ẑEz(r)ejφz(r) (2.25)

and the temporal part is defined as

T̃ (t) ≡ ejωt. (2.26)

It is worth noting the sign of the temporal exponent is a convention, and this work

asserts the positive temporal phase convention of electrical engineering. Maxwell’s

equations for LTI systems are then cast in terms of phasors. Consider Faraday’s Law

∇× E = −Jmf −
∂

∂t
[µH] (2.27)

written in terms of phasors

∇×Re(ẼT̃ ) = −Re(J̃mf T̃ )− ∂

∂t
[µRe(H̃T̃ )]. (2.28)

Derivatives with respect to real variables commute with complex conjugation

d

dx
[f̃(x)

∗
] = lim

∆x→0

f̃(x+ ∆x)
∗ − f̃(x)

∗

∆x
=

[
lim

∆x→0

f̃(x+ ∆x)− f̃(x)

∆x

]∗
=

[
df̃

dx

]∗
.

(2.29)

This implies Re commutes with real derivatives, and by extension linear combinations

of real differential operators, including vector differential operators. Therefore

Re([∇× Ẽ]T̃ ) = −Re(J̃mf T̃ )− µRe

(
H̃
dT̃

dt

)
(2.30)
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where the time independence of the materials has been used and derivatives applied.

The special form of time-harmonic fields allows the time derivative to be evaluated

dT̃

dt
=

d

dt
ejωt = jωejωt = jωT̃ . (2.31)

Using this, and Re(αz̃ + βz̃′) = αRe(z̃) + βRe(z̃′) for α, β ∈ R and z̃, z̃′ ∈ C, write

Re([∇× Ẽ]T̃ ) = Re(−J̃mf T̃ − jωµH̃T̃ ). (2.32)

Relax this equation to include the imaginary part and divide out the temporal part

∇× Ẽ = −J̃mf − jωµH̃. (2.33)

Comparing equations 2.33 and 2.27, the time-dependence has been eliminated in

exchange for complex-valued fields, and the time derivative is effectively replaced by

a scalar multiplication

∂

∂t
→ jω (2.34)

which is a general result. The same logic can be applied to all the equations of 2.18.

The time-harmonic Maxwell’s equations in isotropic matter are then

∇× Ẽ = −J̃mf − jωµH̃

∇× H̃ = J̃ef + jωεẼ

∇ · [εẼ] = ρ̃ef

∇ · [µH̃] = ρ̃mf

BCs:



n̂×∆Ẽ = −K̃mf

n̂×∆H̃ = K̃ef

n̂ · ∆[εẼ] = σ̃ef

n̂ · ∆[µH̃] = σ̃mf

. (2.35)

Field solutions can be converted back to the time domain by equations like 2.24. Note,

the dot product is no longer an inner product because it is not conjugate symmetric,

but retains its significance as an instruction on how to combine quantities.
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The time-harmonic formalism naturally accommodates conduction currents with

only slight modification. Ohm’s law is the statement that electric current is excited

by a force per electric charge

Jec = κef e. (2.36)

For the electromagnetic force equation 2.4, often ‖E| � ‖v ×B‖, which implies

Jec ≈ κeE. (2.37)

Free electric current can be further classified as impressed or conduction

J̃ef = J̃ei + J̃ec (2.38)

where the conduction current phasor is

J̃ec = κeẼ. (2.39)

Insert equations 2.38 and 2.39 into Ampère’s law

∇× H̃ = [J̃ei + [κeẼ]] + jωεẼ (2.40)

and collect terms

∇× H̃ = J̃ei + jω

[
ε+

κe
jω

]
Ẽ. (2.41)

Free electric charge density can also be further classified as impressed or conduction

ρ̃ef = ρ̃ei + ρ̃ec (2.42)

where conduction charge is related to conduction current by the continuity equation

∇ · J̃ec = −jωρ̃ec. (2.43)

Insert equations 2.42, 2.43, and 2.39 into Gauss’s law

∇ · [εẼ] =

[
ρ̃ei +

[
− 1

jω
∇ · [κeẼ]

]]
(2.44)
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and collect terms

∇ ·
[[
ε+

κe
jω

]
Ẽ

]
= ρ̃ei. (2.45)

Equations 2.41 and 2.45 motivate the definition of complex permittivity

ε̃ ≡ ε+
κe
jω
. (2.46)

Similar logic for magnetic sources motivates the definition of complex permeability

µ̃ ≡ µ+
κm
jω
. (2.47)

The time-harmonic Maxwell’s equations in isotropic complex matter are then

∇× Ẽ = −J̃mi − jωµ̃H̃

∇× H̃ = J̃ei + jωε̃Ẽ

∇ · [ε̃Ẽ] = ρ̃ei

∇ · [µ̃H̃] = ρ̃mi

BCs:



n̂×∆Ẽ = −K̃mi

n̂×∆H̃ = K̃ei

n̂ · ∆[ε̃Ẽ] = σ̃ei

n̂ · ∆[µ̃H̃] = σ̃mi

(2.48)

This form of Maxwell’s equations are the foundation for theory presented in this

work. Several assumptions were made to derive these equations from their gen-

eral form. Specifically, these equations apply to linear non-magnetoelectric isotropic

time-invariant media when ‖Ẽ‖ � ‖v × B̃‖. From now on all electromagnetic quanti-

ties are assumed to be complex-valued unless otherwise stated. The complex notation

will be suppressed when convenient.

2.2 Reciprocity

The most basic function of the metaimager is to illuminate a scene with a transmit

antenna and measure the reflection with a receive antenna. It is therefore important
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to model the coupling between the antennas and scene when formulating the forward

model. A key theorem in understanding this coupling is electromagnetic reciprocity.

Figure 2.2: Reciprocity - A scene is defined by ε(r) and µ(r). (a) A set of source

currents in V1 excite fields in V2. (b) A set of source currents in V2 excite fields in V1.

Consider a scene with two different configurations involving the same media but

different sources and fields (figure 2.2). The sources and fields of configuration 1 are

Je1, Jm1, E1, H1, and configuration 2 are Je2, Jm2, E2, H2. Both configurations

satisfy Maxwell’s curl equations 2.48
∇× E1 = −Jm1 − jωµH1

∇×H1 = Je1 + jωεE1

(2.49)


∇× E2 = −Jm2 − jωµH2

∇×H2 = Je2 + jωεE2

. (2.50)
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These two systems of equations can be combined with a vector calculus product rule

∇ · [A×B] = B ·∇×A−A ·∇×B (2.51)

by taking the appropriate dot products

H2 ·∇× E1 = −H2 · Jm1 − jωH2 · µH1

E2 ·∇×H1 = E2 · Je1 + jωE2 · εE1

H1 ·∇× E2 = −H1 · Jm2 − jωH1 · µH2

E1 ·∇×H2 = E1 · Je2 + jωE1 · εE2

(2.52)

resulting in
∇ · [E1 ×H2] = −H2 · Jm1 − jωH2 · µH1 − E1 · Je2 − jωE1 · εE2

∇ · [E2 ×H1] = −H1 · Jm2 − jωH1 · µH2 − E2 · Je1 − jωE2 · εE1

. (2.53)

Combine the remaining equations by taking the difference

−∇ · [E1 ×H2 − E2 ×H1] = [E1 · Je2 −H1 · Jm2]− [E2 · Je1 −H2 · Jm1]. (2.54)

Integrate over volume V and apply the divergence theorem to yield the general time-

harmonic reciprocity theorem in integral form

−
∮
S

[E1×H2−E2×H1]·dS =

∫
V

[[E1 ·Je2−H1 ·Jm2]−[E2 ·Je1−H2 ·Jm1]]dV. (2.55)

Fields of sources with finite support obey the Sommerfeld radiation conditions

lim
r→∞

r[H− η−1r̂× E] = 0 (2.56)

lim
r→∞

r[E + ηr̂×H] = 0 (2.57)
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which implies the surface integral vanishes when V = R3. Furthermore, the finite

support of the sources limits the integration domains. Therefore∫
V2

[E1 · Je2 −H1 · Jm2]dV =

∫
V1

[E2 · Je1 −H2 · Jm1]dV. (2.58)

This is reciprocity for sources with finite support. The sources do not have to simul-

taneously exist, so this equation cannot be interpreted as a power. However it can be

used to compute the coupling between an antenna and scene as will be demonstrated.

2.3 Scene Model

In general the material properties of a scene can be very complicated. Reciprocity

indicates a need to model currents in a scene. Fortunately several simplifying assump-

tions can be made. First, the assumptions built into the time-harmonic Maxwell’s

equations for complex media help considerably. Secondly, (after background subtrac-

tion) all non-physical magnetic currents can be ignored.

Total electric volume current density is expanded from equations 2.6 and 2.38 as

Je = Jei + Jec + Jeb + Jep (2.59)

where the subscripts are for impressed, conduction, bound, and polarization currents.

Assume the scene has no impressed electric volume current density

Jei = 0 (2.60)

Conduction current was discussed in the process of deriving the time-harmonic

Maxwell’s equations. Ohm’s law was approximated as

Jec ≈ κeE (2.61)
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Materials give rise to additional types of current. These currents are embedded

in the definitions of D and H. The bound electric volume current density is

Jeb = ∇×M. (2.62)

For isotropic media

M = χmH. (2.63)

This work assumes non-magnetic scenes with χm = 0 and thus M = 0 and Jeb = 0.

The polarization electric volume current density is

Jep = jωP. (2.64)

For isotropic media

P = ε0χeE. (2.65)

Combining the above equations and assumptions, the total scene current is

Je = Jec + Jep = [κeE] + [jω[ε0χeE]] = [κe + jωε0χe]E (2.66)

Define the complex conductivity such that (complex notation emphasized)

J̃e = κ̃eẼ (2.67)

κ̃e ≡ κe + jωε0χe (2.68)

This is similar but distinct from the complex permittivity ε̃. The real part of κ̃e

represents electric conduction currents that move in phase with the fields, and the

imaginary part represents dielectric polarization currents that move a quarter turn

out of phase.
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2.4 Antenna Model

Modeling the measurement process requires knowledge of the fields radiated by an-

tennas at arbitrary positions in space. When an antenna port is driven with a time-

harmonic reference potential V0, electric currents are driven on the surface of the

antenna that radiate electromagnetic fields into space. The details of these physical

currents are difficult to predict and measure. However it is easy to measure the ra-

diating fields on a plane and relate them to fictitious sources that radiate equivalent

fields. This is an application of the equivalence principle.

Figure 2.3: Equivalence Principle - (a) Original problem. (b) Equivalent problem.

The general idea of the equivalence principle is to transform a problem into an

equivalent problem that preserves desired field quantities and facilitates theoretical

development. There are many useful transformations and applications. Consider the

equivalence principle when space is partitioned into volumes V1 and V2 as illustrated
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in figure 2.3. The original problem is transformed into an equivalent problem

(ε1, µ1,E1,H1, ε2, µ2,E2,H2)⇒ (ε′1, µ
′
1,E

′
1,H

′
1, ε
′
2, µ

′
2,E

′
2,H

′
2) (2.69)

and the boundary conditions are necessarily transformed as well
n̂×∆E = −Kmi

n̂×∆H = Kei

⇒


n̂×∆E′ = −K′mi

n̂×∆H′ = K′ei

. (2.70)

Usually the quantities in one volume are changed and the other unchanged.

Figure 2.4: Antenna Model - (a) physical situation, (b) Love’s equivalence, (c)

Love’s equivalence for a PEC plane, (d) equivalent source currents.

The antenna model is derived in figure 2.4. First consider the physical situation of

an antenna radiating fields into a homogeneous background medium εb, µb. Partition

space with a planar surface into volume V1 that fully contains the antenna and volume

V2. Suppose only fields in V2 are needed. Apply Love’s equivalence to set the fields
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in V1 to zero

(ε1, µ1,E1,H1, εb, µb,E2,H2)⇒ (εb, µb,0,0, εb, µb,E2,H2) (2.71)

which is possible by satisfying the boundary conditions with fictitious surface currents
n̂× E2 = −K′mi

n̂×H2 = K′ei

. (2.72)

Because the fields are zero in V1, the material properties of V1 are arbitrary. Consider

Love’s equivalence for a perfect electric conductor (PEC) plane in which V1 is filled

with a PEC plane set back a small distance from the boundary plane. In the limit

the distance goes to zero, image theory (appendix A) predicts electric currents won’t

radiate while magnetic currents radiate double. Image theory makes this exact when

used to replace the PEC with the background medium
2n̂× E2 = −K′′mi

n̂×H2 = 0

. (2.73)

Thus, if an antenna’s electric field is known on a plane, the antenna can be mod-

eled as an equivalent magnetic surface current density radiating in a homogeneous

background medium

Kmi(r) = −2n̂× E(r). (2.74)

The electric field of an antenna is estimated by near-field scan (NFS) using a vector

network analyzer (VNA) to measure S-parameters in terms of reference voltage V0

ENFS(r) = E0SNFS(r) = V0ΓSNFS(r). (2.75)

The quality of this model partially depends on the size of the scan.
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2.5 Radiation Model

The antenna model results in source currents radiating in a homogeneous isotropic

background material. An analytic field solution exists for this configuration, but the

derivation is complex and left to appendix A. Potentials are used to simplify the

treatment. The result is summarized here.

Fields of arbitrary volume sources in homogeneous isotropic media are

Ee(r) =
1

jωε

∫
V

[G2Je(r
′) +G1R̂[R̂ · Je(r

′)]]dV ′ − 1

jωε
Je(r)

Em(r) =

∫
V

G0R̂× Jm(r′)dV ′

He(r) = −
∫
V

G0R̂× Je(r
′)dV ′

Hm(r) =
1

jωµ

∫
V

[G2Jm(r′) +G1R̂[R̂ · Jm(r′)]]dV ′ − 1

jωµ
Jm(r)

(2.76a)

(2.76b)

(2.76c)

(2.76d)

where

G0 ≡ [4π]−1[jkR−1 +R−2]e−jkR

G1 ≡ [4π]−1[−k2R−1 + j3kR−2 + 3R−3]e−jkR

G2 ≡ [4π]−1[k2R−1 − jkR−2 −R−3]e−jkR

(2.77a)

(2.77b)

(2.77c)

.

The antenna model only has magnetic current sources, and the scene model is

excited only by electric fields, so only one radiation equation is required

Em(r) =

∫
V

1

4π

[
jk

R
+

1

R2

]
e−jkRR̂× Jm(r′)dV ′ (2.78)

or in terms of the magnetic surface currents of the antenna model

Em(r) =

∫
S

1

4π

[
jk

R
+

1

R2

]
e−jkRR̂×Km(r′)dS ′. (2.79)
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It is sufficient to keep only the lowest order term

Em(r) ≈ jk

4π

∫
S

R

R2
e−jkR ×Km(r′)dS ′. (2.80)

Practically the radiation model is in terms of S-parameters

S(r) ≈ jk

4π

∫
S

R

R2
e−jkR × [−2n̂× SNFS(r′)] dS ′. (2.81)

If the radiation patterns are linearly polarized and the scene doesn’t appreciably

rotate polarization, the model can be approximated by a single component which

can save on computational time.

2.6 Imaging Model

Figure 2.5: Metaimager Forward Model

All of the tools needed to derive the metaimager forward model (figure 2.5) have

been assembled. The basic idea is a of form scattering problem, which can be formu-
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lated in terms of total, incident, and scattered fields

E = Einc + Esct (2.82)

where the incident field is the field when only background is present. In the case of

the metaimager, the incident field is the measured transmit field

Einc = Etx. (2.83)

The total and scattered fields are difficult to compute because the incident field excites

scene currents which radiate and cause higher-order scattering. A great simplification

can be made for scenes with weak scattering by approximating the excited currents

as depending only on the incident field and not the total field

Je,scn(E) ≈ Je,scn(Einc). (2.84)

This is called the first Born approximation for being the first term in the Born series.

Ironically this approximation also works for strong reflections so long as multiple

reflections are minimized. This important approximation makes the subsequent for-

ward model linear, and thus amiable to solution.

Consider reciprocity for finite sources∫
V2

[E1 · Je2 −H1 · Jm2]dV =

∫
V1

[E2 · Je1 −H2 · Jm1]dV (2.85)

where V1 is scene volume Vscn, and V2 is receive volume Vrx enclosing a thin slice of

transmission line at receive port 2. After background subtraction , the only sources

to consider are electric sources∫
Vrx

Ẽscn · J̃e,rxdV =

∫
Vscn

Ẽrx · J̃e,scndV. (2.86)
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The left integral encloses a plane of coax transmission line and can be reduced to a

circuit-theoretic form, while equations 2.67 and 2.84 can be inserted into the right

integral

ṼscnĨe,rx =

∫
Vscn

Ẽrx · [κ̃eẼtx]dV. (2.87)

Isolate the voltage at the recieve port due to the scene sources

Ṽscn =
1

Ĩe,rx

∫
Vscn

Ẽrx(r) · κ̃e(r)Ẽtx(r)dV. (2.88)

This equation is similar to the model proposed in. However a more appropriate form

incorporates equation 2.75

Ṽscn =
1

Ĩe,rx

∫
Vscn

[ṼrxΓrxS̃rx] · κ̃e[ṼtxΓtxS̃tx]dV. (2.89)

Use the identity Z̃rx = Ṽrx/Ĩrx and factor out the reference transmit voltage Ṽtx

Ṽscn =

[∫
Vscn

[Z̃rxΓrxS̃rx] · κ̃e[ΓtxS̃tx]dV
]
Ṽtx. (2.90)

This equation looks like an S-parameter measurement between the transceiver ports

Ṽscn = S̃21Ṽtx (2.91)

where port 1 is the transmit antenna, port 2 is the receive antenna, and S̃21 is

S̃21 =

∫
Vscn

[Z̃rxΓrxS̃rx(r)] · κ̃e(r)[ΓtxS̃tx(r)]dV. (2.92)

Zrx is the receive antenna impedance and can be measured with a VNA using reflec-

tion measurements. Γrx and Γtx are real-valued geometric factors based on the NFS

probe. From experience, the forward model is still valid even when Z̃rx, Γrx and Γtx

are unaccounted for, although the interpretation of images is somewhat ambiguous.

Using slightly different notation to indicate this case, the forward model becomes

gi =

∫
Vscn

Srx,i(r) · f(r)Stx,i(r)dV. (2.93)
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Approximate this integral by a discrete sum

gi =
∑
j

Srx,i(rj) · f(rj)Stx,i(rj)∆Vj. (2.94)

For isotropic media this sum can be written as

gi =
∑
j

Hijf(rj) (2.95)

where

Hij ≡ Srx,i(rj) · Stx,i(rj)∆Vj (2.96)

or in matrix notation

g = Hf . (2.97)

Thus, the metaimager forward model can be reduced to a linear equation.
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Chapter 3

Image Reconstruction

The metaimager forward model results in a complex-valued linear system

Hf = g (3.1)

where sensing matrix H ∈ Cm×n : Cn → Cm relates a vector of scene voxel scattering

coefficients f ∈ Cn to a vector of transceiver S21 measurements g ∈ Cm. The image

reconstruction problem is the task of, given a measurement vector g, estimating

the associated scene vector f by inverting H. In general this is an ill-posed problem,

and H−1 does not usually exist.

This chapter discusses a variety of methods and algorithms used to meaningfully

estimate a solution to the image reconstruction problem, even when no exact solu-

tion exists. Basic space and time complexity analysis for the various methods are

discussed.

Matrix inversion is a general problem in linear algebra, and a notation different

from the forward model is adopted in the literature. Let A = H, x = f , and b = g

such that

Ax = b. (3.2)

The inverse problem then becomes given matrix A and vector b, find vector x. A

necessary but insufficient condition for A−1 to exist is that A is square with m = n.

This almost never happens in practice. More often m 6= n. When n < m (more

measurements than voxels), then the system is over-determined (tall). If there m > n
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(more voxels than measurements), then the system under-determined (wide).

An under-determined image reconstruction problem corresponds to compressed

sensing (CS). Such a linear system has an infinite number of solutions. To pick

a unique solution, prior information must be incorporated into the reconstruction

model. For instance, the number of non-zero voxels can be penalized for sparse

scenes.

For general computational imaging applications it is desirable to approximately

match the number of measurements with the number of reconstruction voxels. This

is to mitigate the need for a prior, and to minimize the size of the inverse problem.

This chapter begins with the SVD pseudoinverse, which is theoretically interest-

ing, but computationally expensive to compute. Then the very simple matched filter

is introduced, which relies on the statistical properties of a random system with a

random matrix. Next complex least squares with regularization is derived to cast any

ill-posed linear inverse problem into a well-posed invertible inverse problem with a

unique solution. Three iterative methods are then derived to solve the least-squares

problem with better computationally complexity than more direct inverse methods.

3.1 SVD Pseudoinverse

Every matrix has a singular value decomposition (SVD) given by

A = UΣVH (3.3)

where U ∈ Cm×m and V ∈ Cn×n are unitary matrices and Σ ∈ Rm×n is a diagonal

matrix. The elements σi ∈ R+0 on the diagonal of Σ are called singular values,

the whole collection of singular values is called the singular value spectrum, and
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the spectrum is customarily arranged in descending order. The SVD indicates that

any linear transformation can be thought of as norm-preserving unitary “rotation”,

followed by a per-component scaling, and then one more “rotation”.

The matrix factors of can be used to form an SVD pseudoinverse. Unitary

matrices are defined by the property Q−1 = QH , which apply to U and V. Slightly

more care must be taken to define the inverse of Σ because singular values may be

0. Define the matrix Σ+ ∈ Rn×m to be the diagonal matrix where the diagonal

elements are the reciprocals of non-zero singular values or zero otherwise. Then the

SVD pseudoinverse is defined as

A+ ≡ VΣ+UH . (3.4)

Strictly speaking, A−1 does not exist, but A+ shares features that are desired in an

inverse. These are codified in the properties of the Moore-Penrose pseudoinverse. An

estimate for the solution to the linear system is then found to be

xpinv = A+b . (3.5)

It is often useful to modify the pseudoinverse by truncating the singular value

spectrum below a threshold. This can help prevent extremely small singular values

and nullspaces from magnifying noise and numeric errors to problematic levels. This

has the side benefit of making the inverse problem smaller. The singular value spec-

trum also reveals important details about the information content of a linear system,

and informs the design process in several ways, from minimizing correlation between

measurements, to maximizing total number of useful elements, etc.

Algorithms for computing the SVD of a matrix are outside the scope of this text.

State of the art algorithms have time complexity of O(km2n+k′n3) for some constants
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k, k′ ∈ R. This is prohibitively expensive for very large linear systems that have real

time constraints, and an alternative reconstruction strategies must be found.

3.2 Matched Filter

The simplest image reconstruction method is matched filter. Matched filter re-

construction exploits the statistical nature of a random matrix A to formulate a

computationally inexpensive approximate inverse. The key idea is that large random

vectors with elements pulled from a zero-mean distribution are on average orthogonal

to each other and the same length. This applies to the columns of A. Premultiplying

A by its conjugate transpose then should very nearly equal the identity matrix scaled

by some real constant k ∈ R

AHA ≈ kI (3.6)

and thus the solution is approximated by

x ≈ 1

k
AHb. (3.7)

The behavior of matched filter reconstruction is understood by its statistical proper-

ties. The real case will be analyzed first and then extended to the complex case.

Some basic statistical theorems are needed to study the matched filter. A contin-

uous random variable x ∈ R is associated with a continuous probability distribution

p : R→ R for which the integral over all values must equal 1∫ ∞
−∞

p(x)dx = 1. (3.8)

The average of a real function f : R→ R of a real random variable x ∈ R is then

〈f(x)〉 =

∫ ∞
−∞

f(x)p(x)dx. (3.9)
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For functions of two random variables, a joint probability function pxy : R2 → R

must be specified, and this distribution must also integrate over all values to 1∫ ∞
−∞

∫ ∞
−∞

pxy(x, y)dxdy = 1. (3.10)

The average of a real function f : R2 → R of two real random variables x, y ∈ R is

then

〈f(x, y)〉 =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)pxy(x, y)dxdy. (3.11)

When random variables are independent, their joint probability has the special form

pxy(x, y) = px(x)py(y). (3.12)

The average value of independent random variables have some nice properties. First,

the average of the sum or independent random variables is the sum of the average of

the random variables

〈x+ y〉 =

∫ ∞
−∞

∫ ∞
−∞

[x+ y][px(x)py(y)]dxdy

=

∫ ∞
−∞

xpx(x)dx

∫ ∞
−∞

py(y)dy +

∫ ∞
−∞

px(x)dx

∫ ∞
−∞

ypy(y)dy

= 〈x〉+ 〈y〉 .

(3.13)

Secondly, the average value of the product of independent random variables is the

product of the average value of those variables

〈xy〉 =

∫ ∞
−∞

∫ ∞
−∞

[xy][px(x)py(y)]dxdy =

∫ ∞
−∞

xpx(x)dx

∫ ∞
−∞

ypy(y)dy = 〈x〉 〈y〉 .

(3.14)

Now consider the real random matrix A ∈ Rm×n with independent and identically

distributed elements drawn from a zero-mean normal distribution with variance σ2

p(x) = N(x; 0, σ2) =
1√

2πσ2
e−

[x−0]2

2σ2 . (3.15)

48



Elements of matrix ATA can be classified as either on or off the main diagonal.

On-diagonal elements are the inner products of columns with themselves, and off-

diagonal elements are the inner products between different columns. First consider

the on-diagonal elements. A column of A is a random vector x ∈ Rm. Therefore the

average of an on-diagonal element is the average of the inner product of x with itself

〈
xTx

〉
=

〈
m∑
i=1

x2
i

〉
=

m∑
i=1

〈
x2
i

〉
=
〈
x2
〉 m∑
i=1

1 = m
〈
x2
〉
. (3.16)

The average of x2 is

〈
x2
〉

=

∫ ∞
−∞

[
x2
] [ 1√

2πσ
e−

x2

2σ2

]
dx =

2√
2πσ

∫ ∞
0

x2e−
x2

2σ2 dx =
2√
2πσ

2σ2

4

√
2πσ2 = σ2

(3.17)

where the following identity is used∫ ∞
0

x2ne−ax
2

dx =
[2n− 1]!!

an2n+1

√
π

a
. (3.18)

Combining these results it is found that the average of on-diagonal elements is

〈
xTx

〉
= mσ2. (3.19)

Now consider off-diagonal elements. In this case the inner product of two independent

column vectors x ∈ Rm and x′ ∈ Rm is formed. Taking the average it is found

〈
xTx′〉 =

〈
m∑
i=1

xix
′
i

〉
=

m∑
i=1

〈xi〉 〈x′i〉 = 〈x〉 〈x′〉
m∑
i=1

1 = m 〈x〉 〈x′〉 . (3.20)

By assumption the elements are drawn from a zero-mean distribution

〈x〉 =

∫ ∞
−∞

[x]

[
1√
2πσ

e−
x2

2σ2

]
dx =

1√
2πσ

∫ ∞
−∞

xe−
x2

2σ2 dx = 0 (3.21)

the last step following by integrating an odd function over an even interval. This

means that the average off-diagonal element is 0

〈
xTx′

〉
= 0. (3.22)
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Putting the two cases together, it is found that k = mσ2 and

〈
ATA

〉
= mσ2I. (3.23)

Extend this result to the complex case by considering complex random matrix

A ∈ Cm×n with elements in rectangular form

z = x+ jy (3.24)

where the continuous probability distributions for the real and imaginary parts are

given as px(x) = n(x; 0, σ/
√

2) and py(y) = n(y; 0, σ/
√

2). Consider the on-diagonal

elements of AHA. The square in the real case is replaced with a complex modulus

〈
zHz

〉
= m

〈
x2 + y2

〉
= m

[〈
x2
〉

+
〈
y2
〉]

= m

[
σ2

2
+
σ2

2

]
= mσ2. (3.25)

The motivation for multiplying the variance a factor of 1/
√

2 is now apparent. Be-

cause 〈z〉 = 0, the average of off-diagonal elements is

〈
zHz′

〉
= 0. (3.26)

Thus in the complex case the average of AHA is

〈
AHA

〉
= mσ2I (3.27)

which is the same as the real result save for the conjugate transpose.

The results of this section motivates the definition of the matched filter approxi-

mate solution

xmf ≡
1

mσ2
AHb. (3.28)

For imaging, often the scale of the image is unimportant. In this case the scalar

factor can be ignored

xmf = AHb. (3.29)
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MF works surprisingly well with minimal effort. it can be interpreted as correlat-

ing signals in the time domain, and this works because the columns of measurement

matrix H are designed to be (ideally) uncorrelated. Assuming the inputs are already

loaded in memory, the space complexity of matched filter is Os(n) because an out-

put scene vector is needed. The time complexity is Ot(mn) for the single matrix

multiplication.

While matched filter does not produce the highest quality estimate for a solu-

tion, for the amount of computation it has adequate results. The first step of more

sophisticated algorithms are often equivalent to matched filter. Note, the analysis

presented in this section assumes all the elements of A are independent and identi-

cally distributed. This is only an approximation that is unlikely to be exactly realized

in practice, but the key ideas remain mostly valid.

3.3 Complex Least Squares

Given matrix A ∈ Cm×n and vector b ∈ Cm, find vector x ∈ Cn such that

Ax = b. (3.30)

Usually this is an ill-posed problem having no solutions or infinite solutions.

While it is not always possible to satisfy Eq. 3.30, it is always possible to take

the difference of both sides. Define the residual as

r(x) ≡ b−Ax . (3.31)

A reasonable, although somewhat arbitrary, way to compare the fitness of any x as

an approximate solution to Eq. 3.30 is by the residual norm (squared)

f(x) = ‖b−Ax‖2 (3.32)
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where the norm is taken to be that induced by the standard complex inner product

〈x,y〉 = xHy ⇒ ‖x‖2 = 〈x,x〉 = xHx. (3.33)

A smaller residual norm is interpreted as indicating a better approximation to Eq.

3.30, and zero residual norm an exact solution. Function f : Cn → R is a cost

function for which a global minimum is sought. This is the complex least squares

problem. A solution vector xs ∈ Cn is defined to minimize the cost function

xs = arg min
x∈Cn

‖b−Ax‖2 . (3.34)

Gradient-based methods are often used to solve optimization problems. For a

real-valued function of real variables f : Rn → R the gradient points in the direction

of greatest change, and extrema are necessarily at critical points with zero gradient

∇f(xs) = 0. (3.35)

It is desirable to adapt these ideas to complex functions. Recall for R3 the gradient

is motivated by writing the total derivative of f in terms of a dot product (a kind of

inner product)

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz =

[
x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z

]
· [x̂dx+ ŷdy + ẑdz] = ∇f · dr.

(3.36)

It would seem a complex gradient could be defined in terms of complex derivatives

and the standard complex inner product, and this is true. However the complex

least squares cost function is not complex-differentiable despite being continuous.

Additional tools of calculus are needed to generalize the gradient to this case.
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3.3.1 CR Calculus

Consider a complex-valued function f : C→ C of a complex variable z ∈ C

f(z) ∈ C. (3.37)

Complex variable z can be represented in rectangular form as a linear combination

of two real variables x, y ∈ R

z = x+ jy . (3.38)

Likewise function f can be represented in rectangular form as a linear combination

of two real-valued functions u, v : R2 → R of two real variables x, y ∈ R

f(x, y) = u(x, y) + jv(x, y) (3.39)

so f can be represented as a complex-valued function of two real variables f : R2 → C

f(z) = f(x, y) ∈ C. (3.40)

The complex derivative is defined analogous to the real derivative

df

dz
≡ lim

∆z→0

f(z + ∆z)− f(z)

∆z
. (3.41)

Complex differentiability imposes strong constraints on f . For the complex derivative

to exist the definition must evaluate to the same number for any direction of ∆z in

the complex plane. This is similar to the condition that for a real derivative to exist

the left and right limits must be equal. Represent ∆z in rectangular form as

∆z = ∆x+ j∆y. (3.42)

One way to evaluate the complex derivative is along the real axis

df

dz
= lim

∆x→0

f(x+ ∆x, y)− f(x, y)

∆x
=
∂f

∂x
. (3.43)
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Another way to evaluate the complex derivative is along the imaginary axis

df

dz
= lim

∆y→0

f(x, y + ∆y)− f(x, y)

j∆y
=

1

j

∂f

∂y
. (3.44)

For the complex derivative to exist, Eq. 3.43 and Eq. 3.44 must be equal

∂f

∂x
=

1

j

∂f

∂y
. (3.45)

Insert the rectangular form of f into this equation[
∂u

∂x
+ j

∂v

∂x

]
=

1

j

[
∂u

∂y
+ j

∂v

∂y

]
(3.46)

and isolate the real and imaginary parts to form a linear system of equations
∂u
∂x

= ∂v
∂y

∂u
∂y

= − ∂v
∂x

. (3.47)

These are the Cauchy-Riemann equations. A function’s real and imaginary parts

must satisfy these equations to be complex-differentiable, or holomorphic.

Some important functions are not holomorphic, such as complex conjugation

f(x, y) = x− jy = z∗ (3.48)

and complex modulus

f(x, y) = x2 + y2 = [x− jy][x+ jy] = z∗z = |z|2 . (3.49)

These functions are used in the complex least squares cost function via the norm.

Thus the complex derivative can’t be applied to complex least squares optimization. In

fact the only holomorphic real-valued function is a constant real function. However

the rectangular form of a non-holomorphic complex function can still have well-

defined real derivatives which can be exploited. This is the key idea of CR calculus.
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Consider the complex differential dz and its conjugate dz∗ in rectangular form

dz = dx+ jdy dz∗ = dx− jdy . (3.50)

Rewrite the complex differentials as the real part and imaginary part differentials

dx =
1

2
[dz + dz∗] dy =

1

2j
[dz − dz∗]. (3.51)

The total derivative of function f in rectangular form is

df =
∂f

∂x
dx+

∂f

∂y
dy. (3.52)

Use Eq. 3.51 to express the total derivative in terms of the complex differentials

df =
1

2

[
∂f

∂x
+

1

j

∂f

∂y

]
dz +

1

2

[
∂f

∂x
− 1

j

∂f

∂y

]
dz∗. (3.53)

Define the CR (Wirtinger) derivatives as

∂

∂z
≡ 1

2

[
∂

∂x
+

1

j

∂

∂y

]
∂

∂z∗
≡ 1

2

[
∂

∂x
− 1

j

∂

∂y

]
(3.54)

so the total derivative becomes

df =
∂f

∂z
dz +

∂f

∂z∗
dz∗ . (3.55)

These definitions suggest that f(z) can be parameterized in terms of f(z, z∗)

f(z) = f(x, y) = f(z, z∗) ∈ C (3.56)

which is further supported by z and z∗ behaving like independent variables with

respect to the CR derivatives

∂z

∂z
=

1

2

[
∂

∂x
+

1

j

∂

∂y

]
[x+ jy] = 1

∂z∗

∂z
=

1

2

[
∂

∂x
+

1

j

∂

∂y

]
[x− jy] = 0 (3.57)

∂z

∂z∗
=

1

2

[
∂

∂x
− 1

j

∂

∂y

]
[x+ jy] = 0

∂z∗

∂z∗
=

1

2

[
∂

∂x
− 1

j

∂

∂y

]
[x− jy] = 1. (3.58)
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In addition, a function f(z, z∗) is holomorphic exactly when ∂f/∂z∗ = 0

∂f

∂z∗
=

1

2

[
∂

∂x
− 1

j

∂

∂y

]
[u+ jv] =

1

2

[
∂u

∂x
− ∂v

∂y

]
+
j

2

[
∂u

∂y
+
∂v

∂x

]
= 0. (3.59)

The last step follows from the Cauchy-Riemann equations, Eq. 3.47. Therefore a

concise statement of the Cauchy-Riemann equations is

∂f

∂z∗
= 0 ⇔ holomorphic . (3.60)

In the language of CR calculus it is now clear why the least squares cost function is

not holomorphic; it depends on conjugated variables via the norm, so ∂f/∂z∗ 6= 0.

The CR derivatives behave similar to real derivatives, in that they are linear

operators with a product rule and chain rule. Linearity follows from the CR derivative

definitions Eq. 3.54 because they are linear combinations of linear operators, thus

∂

∂z
[αf(z, z∗) + βg(z, z∗)] = α

∂f

∂z
+ β

∂g

∂z
. (3.61)

The CR product rule follows the same pattern as the real product rule

∂

∂z
[f(z, z∗)g(z, z∗)] =

∂f

∂z
g + f

∂g

∂z
(3.62)

and is derived by evaluating in rectangular form

∂

∂z
[f(z, z∗)g(z, z∗)] =

1

2

[
∂

∂x
+

1

j

∂

∂y

]
[f(x, y)g(x, y)]

=
1

2

[
∂

∂x
[fg] +

1

j

∂

∂y
[fg]

]
=

1

2

[
∂f

∂x
g + f

∂g

∂x
+

1

j

[
∂f

∂y
g + f

∂g

∂y

]]
=

[
1

2

[
∂

∂x
+

1

j

∂

∂y

]
f

]
g + f

[
1

2

[
∂

∂x
+

1

j

∂

∂y

]
g

]
=
∂f

∂z
g + f

∂g

∂z
.
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The CR chain rule is more complicated than the real chain rule, but the pattern

follows the derivative of a function of two variables that depend on the same variable

∂

∂z
g(f(z, z∗), f ∗(z, z∗)) =

∂g

∂f

∂f

∂z
+

∂g

∂f ∗
∂f ∗

∂z
(3.63)

and is also derived by evaluating in rectangular form

=
∂

∂z
g(f(z, z∗), f ∗(z, z∗))

=
1

2

[
∂

∂x
+

1

j

∂

∂y

]
g(u(x, y), v(x, y))

=
1

2

[
∂g

∂u

∂u

∂x
+
∂g

∂v

∂v

∂x
+

1

j

∂g

∂u

∂u

∂y
+

1

j

∂g

∂v

∂v

∂y

]
=

1

4

[
∂g

∂u

∂u

∂x
+ j

∂g

∂u

∂v

∂x
+

1

j

∂g

∂u

∂u

∂y
+
∂g

∂u

∂v

∂y
+

1

j

∂g

∂v

∂u

∂x
+
∂g

∂v

∂v

∂x
− ∂g

∂v

∂u

∂y
+

1

j

∂g

∂v

∂v

∂y

]
+

1

4

[
∂g

∂u

∂u

∂x
− j ∂g

∂u

∂v

∂x
+

1

j

∂g

∂u

∂u

∂y
− ∂g

∂u

∂v

∂y
− 1

j

∂g

∂v

∂u

∂x
+
∂g

∂v

∂v

∂x
+
∂g

∂v

∂u

∂y
+

1

j

∂g

∂v

∂v

∂y

]
=

1

4

[
∂g

∂u
+

1

j

∂g

∂v

] [
∂u

∂x
+ j

∂v

∂x
+

1

j

∂u

∂y
+
∂v

∂y

]
+

1

4

[
∂g

∂u
− 1

j

∂g

∂v

] [
∂u

∂x
− j ∂v

∂x
+

1

j

∂u

∂y
− ∂v

∂y

]
=

[
1

2

[
∂g

∂u
+

1

j

∂g

∂v

]] [
1

2

[
∂

∂x
+

1

j

∂

∂y

]
[u+ jv]

]
+

[
1

2

[
∂g

∂u
− 1

j

∂g

∂v

]] [
1

2

[
∂

∂x
+

1

j

∂

∂y

]
[u− jv]

]
=
∂g

∂f

∂f

∂z
+

∂g

∂f ∗
∂f ∗

∂z
.

In addition, conjugation rules follow directly from the definitions Eq. 3.54[
∂f

∂z

]∗
=
∂f ∗

∂z∗

[
∂f

∂z∗

]∗
=
∂f ∗

∂z
. (3.64)

Extending to multivariate functions is straight forward. Consider a complex-

valued vector function f : Cn → Cm of a complex-valued vector z ∈ Cn

f(z) = f(z, z∗) = f(x,y) ∈ Cm. (3.65)
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The total derivative written in matrix notation is

df =
∂f

∂z
dz +

∂f

∂z∗
dz∗ (3.66)

where the differential vectors

dz ≡


dz1

...

dzn

 dz∗ ≡


dz∗1

...

dz∗n

 (3.67)

are transformed by the matrices

∂f

∂z
≡


∂f1
∂z1

. . . ∂f1
∂zn

...
. . .

...

∂fm
∂z1

. . . ∂fm
∂zn

 ∂f

∂z∗
≡


∂f1
∂z∗1

. . . ∂f1
∂z∗n

...
. . .

...

∂fm
∂z∗1

. . . ∂fm
∂z∗n

 . (3.68)

This is simply a system of equations describing the total derivative of each component

of f with respect to complex differential vectors dz and dz∗. Conjugation generalizes

in the expected way [
∂f

∂z

]∗
=
∂f∗

∂z∗

[
∂f

∂z∗

]∗
=
∂f∗

∂z
. (3.69)

The chain rule also generalizes in the expected way

∂

∂z
g(f(z)) =

∂g

∂f

∂f

∂z
+
∂g

∂f∗
∂f∗

∂z

∂

∂z∗
g(f(z)) =

∂g

∂f

∂f

∂z∗
+
∂g

∂f∗
∂f∗

∂z∗
. (3.70)

There is no higher-dimensional analog of the product rule.

Now consider the special case of the total derivative of a real-valued function of

complex variables f : Cn → R. Because f is real, the total derivative can be written

in a special form

df =
∂f

∂z
dz +

∂f

∂z∗
dz∗ =

∂f

∂z
dz +

[
∂f

∂z
dz

]∗
= 2Re

(
∂f

∂z
dz

)
. (3.71)
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As with Eq. 3.36, rewrite Eq. 3.71 using a (standard complex) inner product

∂f

∂z
dz =

[ [
∂f

∂z

]H ]H
dz = ∇fHdz = 〈∇f, dz〉 (3.72)

such that

df = 2Re(〈∇f, dz〉) (3.73)

where the CR gradient is defined as

∇f(z) ≡
[
∂f

∂z

]H
. (3.74)

The factor of 2 from Eq. 3.73 is not included in the definition of the CR gradient

to make it compatible with the complex gradient. Annoyingly this makes the CR

gradient 1/2 the real gradient when applied to real-valued functions of real variables,

so there isn’t perfect symmetry between real and complex gradient theories. However

both theories will agree on df .

To verify that the CR gradient shares qualities with the real gradient consider the

Schwarz inequality applied to the CR gradient of function f and unit vector n̂ ∈ Cn

|〈∇f, n̂〉| ≤ ‖∇f‖ ‖n̂‖ = ‖∇f‖ . (3.75)

The inequality is an equality either when ∇f = 0, or when the vectors are colinear

such that ∇f = αn̂ for a scalar α ∈ C − {0}. To maximize df in Eq. 3.73 the

real part of 〈∇f, n̂〉 must be maximized, which happens when n̂ = ∇f/ ‖∇f‖. In

other words, the CR gradient points in the direction of maximal change like the real

gradient, so the gradient terminology is warranted. It follows then that extrema for

function f are necessarily at critical points where the CR gradient is zero

∇f(zs) = 0. (3.76)
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These facts taken together solidify the interpretation of the CR gradient as a gradient.

In addition to basic CR calculus, an identity for the CR derivative of the modulus

of a holomorphic function f : Cn → C will be theoretically useful

∂

∂z
|f(z; z∗)|2 =

∂

∂z
[f ∗f ] =

∂f ∗

∂z
f + f ∗

∂f

∂z
=

[
∂f

∂z∗
f ∗
]∗

+ f ∗
∂f

∂z
= f ∗

∂f

∂z
(3.77)

where the semicolon in f(z; z∗) indicates the function is technically parameterized in

terms of z and z∗ but is independent of z∗.

3.3.2 Solution

Recall the complex least squares cost function to be minimized is the residual norm

f(x) = ‖b−Ax‖2 . (3.78)

Take the CR gradient of the cost function

∇f(x) = ∇‖b−Ax‖2 (3.79)
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convert to summation notation to evaluate[
∂f

∂xk

]∗
=

 ∂

∂xk

m∑
j=1

∣∣∣∣∣bj −
n∑
i=1

Ajixi

∣∣∣∣∣
2
∗

=

 m∑
j=1

∂

∂xk

∣∣∣∣∣bj −
n∑
i=1

Ajixi

∣∣∣∣∣
2
∗

=

[
m∑
j=1

[
bj −

n∑
i=1

Ajixi

]∗
∂

∂xk

[
bj −

n∑
i=1

Ajixi

]]∗
(Eq. 3.77)

=

[
m∑
j=1

[
bj −

n∑
i=1

Ajixi

]∗ [
∂bj
∂xk
−

n∑
i=1

Aji
∂xi
∂xk

]]∗

=

[
m∑
j=1

[
bj −

n∑
i=1

Ajixi

]∗ [
0−

n∑
i=1

Ajiδik

]]∗

=

[
m∑
j=1

[
bj −

n∑
i=1

Ajixi

]∗
[−Ajk]

]∗

= −
m∑
j=1

Ajk
∗

[
bj −

n∑
i=1

Ajixi

]

(3.80)

and convert back to matrix notation to be concise

∇f(x) = −AH [b−Ax] . (3.81)

Optimize the cost function f by setting its CR gradient to zero

∇f(xs) = −AH [b−Axs] = 0 (3.82)

to derive the complex least squares equation

AHAxs = AHb . (3.83)

This is equivalent to the modified linear system

A′xs = b′ (3.84)
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where A′ = AHA and b′ = AHb. These are also known as normal equations.

Geometrically a complex least squares solution vector xs makes the solution residual

vector rs orthogonal to the columnspace (output space) of A

AH [b−Axs] = AHrs = 0 (3.85)

meaning the solution residual only has components in the space inaccessible to A.

Of passing interest is the real least squares cost function f : Rn → R

f(x) =
1

2
‖b−Ax‖2 (3.86)

where a factor of 1/2 is introduced to compensate for differences between the real

and CR gradients. The real gradient is computed in a similar way as Eq. 3.80 except

instead of Eq. 3.77 the real chain rule is used to differentiate the square and cancel

the 1/2, resulting in

∇f(x) = −AT [b−Ax]. (3.87)

Optimize function f by setting the gradient to zero

∇f(xs) = −AT [b−Axs] = 0 (3.88)

to form the real least squares equation

ATAxs = ATb. (3.89)

The only difference between Eq. 3.83 and Eq. 3.89 is that the conjugate transposes

are replaced by transposes. The similarity between these results belies the important

theoretical differences in their derivation.
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3.3.3 Regularization

A problem with the complex least squares cost function Eq. 3.32 is that infinite

solution vectors exist if A has a non-trivial nullspace. To see this, evaluate the

cost function f at a solution vector xs displaced by any non-zero nullspace vector

e ∈ nullspace(A)− {0} ⊂ Cn such that

f(xs + e) = ‖b−A[xs + e]‖2 = ‖b−Axs − 0‖2 = ‖b−Axs‖2 = f(xs). (3.90)

Thus any non-zero nullspace vector can be added to a solution vector to yield a

different solution vector with the same minimal cost function value.

Some additional condition must be imposed to guarantee a unique solution. This

process is called regularization. In general the cost function is modified by adding

a regularization function R : Cn → R that depends on x

f(x) = ‖b−Ax‖2 +R(x). (3.91)

The regularization function R is somewhat arbitrary and many choices exist. Since

components of non-trivial nullspaces can be arbitrarily large, it is reasonable to penal-

ize the norm of solution vectors to prevent nullspaces from superfluously contributing

to solution vectors. As with regularization functions, several norms exist.

An obvious choice is the norm induced by the standard complex inner product

‖x‖2 = 〈x,x〉
1
2 = [xHx]

1
2 . (3.92)

This is the L2 norm, and a subscript 2 is used here to distinguish it from other norms.

Setting R to the L2 norm squared results in L2 (Tikhonov) regularization

R(x) = ‖x‖2
2 . (3.93)
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Prior information about the solution can be incorporated into the L2 regularizer by

penalizing the difference between an expected solution vector xp ∈ Cn and vector x

R(x) = ‖xp − x‖2
2 . (3.94)

Weighting can also be incorporated into the L2 regularizer by multiplying the vectors

in the norm by invertible matrix Γ ∈ Cn×n

R(x) = ‖Γ [xp − x]‖2
2 . (3.95)

A common weighting choice is Γ = γ
1
2 I where γ ∈ R+ such that

R(x) = γ ‖xp − x‖2
2 (3.96)

which provides a way to adjust the relative importance of the residual norm versus

the regularization function in the cost function. Unfortunately choosing the optimal

γ is problem-specific and usually done empirically.

Other choices of regularization function exist. The generalization of the L2 norm

is the Lp norm, which changes the shape of the unit sphere

‖x‖p ≡
[ n∑
i=1

|xi|p
] 1
p

where p ∈ [1,∞] ⊂ R. (3.97)

Inserting p = 0 into Eq. 3.97 results in the L0 “norm” which counts the number of

non-zero elements in a vector. L0 is not a true norm (e.g. ‖αx‖0 6= |α| ‖x‖0), but it

is an attractive regularizer for enforcing sparsity. Unfortunately L0 minimization is

NP-hard. While it is difficult to use L0 regularization directly, Ch. 5 will discuss how

to indirectly implement an L0 prior using depth cameras to reduce the size of the

inverse problem considerably. More exotic regularization methods include gradient-

based and total-variation-based schemes, but these are computationally prohibitive

for local real-time applications like security screening.
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3.3.4 Left Preconditioning

To precondition a linear system means to transform it into a system with a better

condition number before solving it. While this doesn’t change the solution, it may

make numeric computation more accurate and iterative algorithms converge faster.

Left preconditioning can be incorporated into complex least squares by left multiply-

ing the original linear system Eq. 3.30 by invertible matrix P ∈ Cm×m

PAx = Pb (3.98)

which results in a cost function similar to the weighted L2 regularizer with prior

f(x) = ‖P [b−Ax]‖2 . (3.99)

In the presence of measurement noise, the covariance matrix

Kxy ≡ [cov(xi, yj)] (3.100)

can be used to weight measurement channels based on statistical considerations.

Specifically, the inverse of the auto-covariance matrix, the precision matrix, of data

vector b can be chosen as a preconditioner

P = K−1
bb. (3.101)

Preconditioning is best incorporated directly into iterative algorithms to take ad-

vantage of clever simplifications, as will be shown, but is included here for generality.

3.3.5 Solution Revisited

Regularization and preconditioning are now applied to formulate a well-posed least

squares problem with a unique solution. The original complex least squares cost
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function Eq. 3.32 is the residual norm squared

f(x) = ‖b−Ax‖2. (3.102)

This cost function is modified by incorporating left preconditioning and weighted L2

regularization with a prior

f(x) = ‖P [b−Ax]‖2 + ‖Γ [xp − x]‖2 . (3.103)

Optimize f by taking the CR gradient using Eq. 3.81 as a template and set to zero

∇f(xs) = −AHPHP [b−Axs]− ΓHΓ [xp − xs] = 0 (3.104)

to derive the regularized complex least squares equation

[
AHPHPA + ΓHΓ

]
xs =

[
AHPHPb + ΓHΓxp

]
. (3.105)

While this looks complicated, this is equivalent to the modified linear system

A′xs = b′ (3.106)

where

A′ = AHPHPA + ΓHΓ (3.107)

and

b′ = AHPHPb + ΓHΓxp. (3.108)

Matrix A′ is conjugate-symmetric

A′H = [AHPHPA + ΓHΓ]H = AHPHPA + ΓHΓ = A′ (3.109)
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and positive-definite

〈x,A′x〉 =
〈
x, [AHPHPA + ΓHΓ]x

〉
=
〈
x,AHPHPAx

〉
+
〈
x,ΓHΓx

〉
= 〈PAx,PAx〉+ 〈Γx,Γx〉

= ‖PAx‖2 + ‖Γx‖2

≥ ‖Γx‖2

> 0 when x 6= 0

(3.110)

and thus invertible

xs = A′−1b (3.111)

because a square matrix with a trivial nullspace is full rank by the rank-nullity

theorem.

For the special case of P = I, Γ = γ
1
2 I, and xp = 0, the modified complex least

squares equation reduces to the form used for the remainder of this text

[
AHA + γI

]
xs = AHb . (3.112)

This is a well-posed inverse problem with a unique solution!

3.4 Iterative Methods

The previous section demonstrated how to cast an ill-posed inverse problem into a

well-posed inverse problem using complex least squares with regularization. However

no attempt was made to solve the modified problem. Gauss-Jordon elimination could

be used in principle, but has a time complexity of Ot(n
3), which is computationally

prohibitive for very large sensing matrices. Iterative solvers become the only practical
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Table 3.1: Iterative Linear Solver Symbols

Symbol Name

f cost function

q quadratic form, special case of f

x, v, w arbitrary vectors

xs solution vector

xi iterate vector

x0 initial guess vector

ei error vector

di search direction vector

Di search direction vector augmented matrix

αi search scale

A system matrix

b data vector

ri residual vector

way to solve very large linear systems. Three iterative solvers are developed in this

section; gradient descent on quadratic forms, conjugate gradient, and GMRES.

A large number of symbols are defined in this section. A summary is found in

Tab. 3.1.

3.4.1 Iterative Optimization

Consider the general problem of optimizing a continuous real-valued function of com-

plex variables f : Cn → R. A solution vector xs ∈ Cn at an extreme value of f will
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necessarily be a critical point with zero CR gradient

∇f(xs) = 0. (3.113)

In general, iterative optimization generates a sequence of approximate solutions

called iterate vectors xi ∈ Cn, starting with an initial guess vector x0 ∈ Cn.

Each iteration the iterate vector xi is updated by adding a search direction vector

di ∈ Cn multiplied by a search scale αi ∈ C

xi+1 = xi + diαi . (3.114)

Algorithms have different strategies for choosing di and αi, which affects convergence.

The recurrence relation can be fully expand from the initial guess as the summation

xi = x0 +
i−1∑
j=1

djαj. (3.115)

A statement can already be made about the nature of iterative optimization

without supplying more details. Suppose on the i-th iteration a search direction

vector di is chosen by an unspecified algorithm. A general condition between di and

the gradient at the next iterate xi+1 is found by optimizing f with respect to αi

∂

∂αi
f(xi+1) =

∂f(xi+1)

∂xi+1

∂xi+1

∂αi
+
∂f(xi+1)

∂xi+1
∗
∂xi+1

∗

∂αi
= ∇f(xi+1)Hdi = 0 (3.116)

where the CR chain rule Eq. 3.70 has been applied and the second term eliminated

because ∂/∂αi[x
∗
i + d∗iαi

∗] = 0. Geometrically this equation says follow a search

direction vector until the gradient is orthogonal when updating an iterate. At such

a point f is not changing along the search direction vector, and so a new search

direction should be chosen to further optimize f .

Iterate vectors are approximate solutions, so an error vector ei ∈ Cn can be

defined as

ei ≡ xi − xs (3.117)
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which is like the residual but for the domain of f . Error is typically unknown because

it is defined in terms of a solution vector xs. Despite this limitation the concept is

theoretically useful. The definition for the error vector can be used to rewrite the

iterate recurrence relation Eq. 3.114 as an error recurrence relation

ei+1 = ei + diαi (3.118)

and the iterate summation Eq. 3.115 as an error summation

ei = e0 +
i−1∑
j=1

djαj. (3.119)

3.4.2 Quadratic Form

Application of complex least squares with L2 regularization results in a linear system

with a conjugate-symmetric positive-definite matrix. These properties can be used to

design efficient gradient-based iterative minimization algorithms by considering the

complex least squares cost function for the modified problem. Therefore consider the

linear system

Ax = b (3.120)

where the matrix A ∈ Cn×n is conjugate-symmetric

A = AH (3.121)

and positive-definite

〈x,Ax〉 ≥ 0 and 〈x,Ax〉 = 0⇔ x = 0 (3.122)
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and thus invertible. The complex least squares cost function for invertible systems is

f(x) = ‖b−Ax‖2

= 〈b−Ax,b−Ax〉

= 〈b,b〉 − 〈b,Ax〉 − 〈Ax,b〉+ 〈Ax,Ax〉

= ‖b‖2 − 2Re(bHAx) + xHAHAx

= c′ − 2Re(b′Hx) + xHA′x

(3.123)

where

c′ = ‖b‖2 , b′ = AHb, A′ = AHA. (3.124)

Note the cost function does not need regularization because matrix A is invertible.

Matrix A′ is both conjugate-symmetric

A′H = [AHA]H = AHA = A′ (3.125)

and positive-definite

〈x,A′x〉 =
〈
x,AHAx

〉
= 〈Ax,Ax〉 = ‖Ax‖2 ≥ 0. (3.126)

There is an opportunity to be clever when A shares these properties. Define the

expanded form of cost function f as the quadratic form q : Cn → R

q(x) ≡ xTAx− 2Re(bHx) + c (3.127)

where the primes have been suppressed for reasons that will become apparent in a

moment. This is the most general way to write a real-valued quadratic equation of

complex variables. Take the CR gradient of q

∇q(x) = ∇
[
xTAx− 2Re(bHx) + c

]
(3.128)
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convert to summation notation to evaluate[
∂q

∂xk

]∗
=

[
∂

∂xk

[∑
j

x∗j
∑
i

Ajixi −
∑
j

b∗jxj −
∑
j

x∗jbj + c

]]∗

=

[∑
j

∑
i

Aji
∂

∂xk

[
x∗jxi

]
−
∑
j

b∗j
∂xj
∂xk
−
∑
j

∂x∗j
∂xk

bj +
∂c

∂xk

]∗

=

[∑
j

∑
i

Aji

[
∂x∗j
∂xk

xi + x∗j
∂xi
∂xk

]
−
∑
j

b∗jδjk −
∑
j

0bj + 0

]∗

=

[∑
j

∑
i

Aji
[
0xi + x∗jδik

]
− b∗k

]∗

=

[∑
j

[∑
i

Ajiδik

]
x∗j − b∗k

]∗

=

[∑
j

Ajkx
∗
j − b∗k

]∗

=
∑
j

A∗jkxj − bk

=
∑
j

Akjxj − bk (conjugate-symmetric)

(3.129)

and convert back again to matrix notation to be concise

∇q(x) = Ax− b. (3.130)

Optimize q by setting the gradient to zero

∇q(xs) = Axs − b = 0 (3.131)

to derive the original system to be solved

Axs = b. (3.132)

This is a remarkable result. Evidently the gradient of the quadratic form is the

(negative) residual of the linear system to be solved, and when q is optimized the
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system is solved. Since every conjugate-symmetric positive-definite matrix has a

unique Cholesky decomposition A = LLH , where L ∈ Cn×n is a lower-triangular

conjugate-symmetric positive-definite matrix, the complex least squares problem can

be replaced with the equivalent problem of minimizing the quadratic form using

matrix A, data vector b, and constant c ∈ R. It is now shown q has a unique global

minimum at xs. Consider evaluating q at some solution vector xs offset by non-zero

error vector e ∈ Cn − {0}

= q(xs + e)

= [xs + e]HA[xs + e]− 2Re(bH [xs + e]) + c

= [xHs Axs − 2Re(bHxs) + c] + eHAe + [xHs Ae + eHAxs]− 2Re(bHe)

= q(xs) + eHAe + 2Re(xHs Ae)− 2Re(bHe)

= q(xs) + eHAe

> q(xs) for e 6= 0 (positive-definite)

(3.133)

therefore q(xs) is a global minimum.

Due to the close connection between the gradient of a quadratic form and the

residual of the associated linear system, it is helpful to use the definition of residual

Eq. 3.31 to rewrite the iterate recurrence relation Eq. 3.114 as a residual recurrence

relation

ri+1 = ri −Adiαi (3.134)

and the iterate summation Eq. 3.115 as a residual summation

ri = r0 −
i−1∑
j=1

Adjαj. (3.135)

Summarizing the connections between various quantities, it is found

ri = b−Axi = −Aei = −∇q(xi) . (3.136)
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With an analytic gradient for q, iterative optimization condition Eq. 3.116 can be

evaluated

∂

∂αi
q(xi+1) = ∇q(xi+1)Hdi = −rHi+1di = −[ri −Adiαi]

Hdi = 0 (3.137)

and the optimal search scale αi is found to be

αi =
dHi ri

dHi Adi
. (3.138)

The only unaddressed detail for iterative optimization of a quadratic form is the

choice of search direction di. Two algorithms will be discussed; gradient descent,

and the superior conjugate gradient method.

3.4.3 Gradient Descent

Gradient descent is a general and intuitive iterative minimization algorithm. The

gradient of a function points in the direction of greatest increase, so choose as the

i-th search direction vector di the negative gradient at the current iterate xi

di = −∇f(xi) . (3.139)

In the case of a quadratic form, the gradient is available as an easy to compute

residual. Adding to the list of equivalences, it is found

di = −∇q(xi) = ri = b−Axi = −Aei. (3.140)

Gradient descent on a quadratic form is outlined in Algorithm 1. Given are a

conjugate-symmetric positive-definite matrix A ∈ Cn×n, data vector b ∈ Cn, initial

guess vector x0 ∈ Cn, and tolerance ε ∈ R+. First compute the the initial residual

r0. Then iterate until a maximum number of iterations imax ∈ Z+ is reached, or the
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residual norm is less than or equal to the tolerance. Each iteration the search scale

is computed with Eq. 3.138, then the iterate is updated with Eq. 3.114, and then

the residual is updated with Eq. 3.134.

Algorithm 1: Gradient Descent on Quadratic Form

Result: xi

x1 = x0

r1 = b−Ax1

for i ∈ [1, imax] do

// tolerance test

if ‖ri‖2 ≤ ε2 then

break

end

// compute search direction vector

di = ri

// update

αi = dHi ri/[d
H
i Adi]

xi+1 = xi + diαi

ri+1 = ri −Adiαi

end

The computational complexity of this algorithm can be analyzed as a function

of vectorspace dimension n ∈ Z+. Assume a single thread of execution. The space

complexity is O(n) per run, as only a small fixed number of vectors must be stored

(the input is taken for granted). The time complexity can be analyzed per iteration

and run. Each iteration is dominated by the matrix-vector multiplication Adi and

so has time complexity O(n2). The time complexity per run is harder to assess.

Gradient descent is easy to understand but should not be used for minimizing
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a quadratic form. Its main failing is poor convergence. Iterates tend to oscillate

between subspaces given enough iterations. More advanced iterative solvers address

this issue directly and to great effect by constructing solutions in orthogonal bases.

3.4.4 Conjugate Gradient

Continuing the discussion on the quadratic form q, the optimal search scale Eq. 3.138

can be written in terms of error using equation 3.140

αi = −dHi Aei

dHi Adi
(3.141)

and inserted into the error recurrence relation Eq. 3.119

ei = e0 −
i−1∑
j=1

dj
dHj Aej

dHj Adj
. (3.142)

Observe that the summands are the negative vector-valued A-projection of ej on dj.

To elaborate, A-projection indicates the underlying inner product is the A inner

product defined to be

〈u,v〉A ≡ uHAv (3.143)

which is verified to satisfy the inner product axioms; the definition is positive-definite

because A is positive-definite by assumption, the definition is conjugate-symmetric

because A is conjugate-symmetric by assumption

〈u,v〉A = uHAv = [vHAu]H = 〈v,u〉∗A, (3.144)

and the definition is linear in one of its arguments

〈u, αv + βw〉A = uHA[αv + βw] = αuHAv + βuHAw = α 〈u,v〉A + β 〈u,w〉A .

(3.145)
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The vector-valued A-projection of v on u is then

u
〈u,v〉A
〈u,u〉A

= u
uHAv

uHAu
. (3.146)

Equation 3.141 suggests that the search direction vectors di should be chosen

to be A-orthogonal so each iteration can be interpreted as deconstructing an initial

error vector in a basis one component per iteration. This is accomplished by taking

the residual ri as a seed search direction vector, since the negative gradient is a

good guess otherwise, and making it A-orthogonal to previous search directions by

subtracting off its A-projections

di = ri −
i−1∑
j=1

djβji (3.147)

where the coefficients βij are

βij =
dHj Ari

dHj Adj
(3.148)

leading to the A-orthogonality relation

dHi Adj = 0 when i 6= j . (3.149)

Iteration on quadratic forms with this choice of search direction vectors results in

the conjugate gradient method. The word “conjugate” in this context refers to

A-orthogonality of the search direction vectors, and not to complex conjugation.

The naive conjugate gradient algorithm is presented as Algorithm 2. It is a

modified gradient descent. The only difference is that instead of assigning the search

direction vector to be the residual, it is assigned to be the part of the residual that
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is A-orthogonal to the previous search direction vectors.

Algorithm 2: Naive Conjugate Gradient

Result: xi

x1 = x0

r1 = b−Ax1

for i ∈ [1, imax] do

// tolerance test

if ‖ri‖2 ≤ tol2 then

break

end

// compute search direction vector

di = ri −
∑i−1

j=1 dj[d
H
j Ari]/[d

H
j Adj]

// update

αi = dHi ri/[d
H
i Adi]

xi+1 = xi + αidi

ri+1 = ri − αiAdi

end

Algorithm 2 is conceptually complete, but substantial simplifications can be made

with further analysis and clever substitutions. The set of search directions di forms

an A-orthogonal basis. Consider the initial error vector expanded in this basis

e0 =
n∑
j=1

djδj (3.150)

with A-projection expansion coefficients δj

δj =
dHj Ae0

dHj Adj
. (3.151)

Insert the initial error expansion Eq. 3.150 into the error summation Eq. 3.119

ei =
n∑
j=1

djδj +
i−1∑
j=1

djαj (3.152)
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and form the A inner product with direction vector di

dHi Aei =
n∑
j=1

dHi Adjδj +
i−1∑
j=1

dHi Adjαj = dHi Adiδi. (3.153)

Solving for δi and comparing to Eq. 3.151 and Eq. 3.138 implies the following relation

holds for the first i− 1 coefficients of the error summation

δj =
dHj Ae0

dHj Adj
=

dHj Aej

dHj Adj
= −αj (3.154)

and thus the error summation simplifies to

ei =
n∑
j=i

djδj. (3.155)

This means the error vector converges after n iterations. Furthermore the error

vectors are A-orthogonal to all previous search direction vectors, meaning residuals

are orthogonal to all previous search direction vectors

− dHi Aej = dHi rj = 0 for i < j. (3.156)

Additional orthogonality relationships and useful identities can be derived from

Eq. 3.147 by taking an inner product with residual rk

dHi rk = rHi rk −
i−1∑
j=1

dHj rkβ
∗
ij (3.157)

and considering the various cases. Using Eq. 3.156 it is seen

rHi rk = 0 for i < k ⇒ rHi rk = 0 for i 6= k (3.158)

and

dHi ri = rHi ri for i = k. (3.159)

When k = i− 1, the previous results further imply

dHi ri−1 = −dHi−1ri−1β
∗
i,i−1. (3.160)

79



These seemingly random equations are now used to make drastic simplifications.

Consider the inner product between two residuals, and expand one residual in

terms of the residual summation Eq. 3.135

rHi rj =

[
r0 −

i−1∑
k=1

Adkαk

]H
rj = rH0 rj −

i−1∑
k=1

dHk Arjα
∗
k. (3.161)

This sum equals 0 when i 6= j because of the orthogonality relations. Let j > 3.

Consider i = 2 and assume αi 6= 0 (otherwise the iteration has converged), then

dH1 Arj = 0. Next consider i = 3 and take the previous result, then dH2 Arj = 0. This

pattern repeats through i = j − 1. When i = j, the inner product is no longer 0, so

dHi−1Ari 6= 0. Thus

dHj Ari = 0 for j < i− 1. (3.162)

This is a remarkable result because βij = 0 except when j = i − 1. In other words,

residual vectors are automatically A-orthogonal to all previous search directions ex-

cept the previous one. This means only storage for a single search direction vector

is ever needed in the algorithm, and making the search directions A-orthogonal is

inexpensive. Thus redefine βi−1 ≡ βi,i−1.

Clever substitutions help reduce the computational cost of computing quantities

each iteration. The αi coefficients can be rewritten as

αi =
dHi ri

dHi Adi
=

rHi ri

dHi Adi
(3.163)

and the βi−1 is rewritten as

βi−1 = − dHi ri−1

dHi−1ri−1

= −dHi [ri−1 − αi−1Adi−1]

dHi−1ri−1

= − dHi ri

dHi−1ri−1

= − rHi ri
rHi−1ri−1

(3.164)

which reuses the residual norm squared computed as a byproduct of the tolerance

test.
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Putting the above results together, an efficient version of the conjugate gradient

algorithm is presented in Algorithm 3. Comparing to Algorithm 2, the simplifications

in the computation of the search direction vectors is obvious. Care has been taken
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use temporary variables wherever results can be reused.

Algorithm 3: Conjugate Gradient

Result: xi

imax = min(imax, n)

x1 = x0

r1 = b−Ax1

for i ∈ [1, imax] do

// tolerance test

rr = rHi ri

if rr ≤ tol2 then

break

end

// compute search direction vector

if i == 1 then

d = r1

else

β = rr / rrold

d = ri + βd

end

// update

t = Ad

αi = rr / dHt

xi+1 = xi + αid

ri+1 = ri − αit

rrold = rr

end

A final piece of sophistication is revisiting the preconditioner. While a method to
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include left preconditioning was discussed in the complex least squares problem, it

is better to include preconditioners directly into the algorithm to take advantage of

analytical simplifications. The goal of preconditioning is not to change the solution

of the problem, but to make the linear system have a better condition number. This

makes the cost function more spherical, which aids in convergence. Let E ∈ Cn×n be

an invertible matrix, and consider the equivalent problem of solving

E−1AE−Hx′ = E−1b (3.165)

where

x′ = EHx (3.166)

It is easy to show the matrix E−1AE−H is conjugate-symmetric positive-definite, so

the underlying assumptions about the problem have not been altered. Incorporating

these changes into Algorithm 3 results in the following sequence of equations

r′1 = E−1b− E−1AE−Hx′0

d′1 = r′1

βi−1 = − r′Hi r′i
r′Hi−1r

′
i−1

d′i = r′i − βi−1d
′
i−1

αi =
r′Hi r′i

d′Hi E−1AE−Hd′i

x′i+1 = x′i + αid
′
i

r′i+1 = r′i − αiE−1AE−Hd′i

(3.167)
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which seems to add a great deal of complexity. However the following substitutions

r′i = E−1ri

d′i = EHdi

x′i = EHxi

E−HE−1 = P−1

(3.168)

show only modest changes must be made to the algorithm

r1 = b−Ax0

d1 = P−1r1

βi−1 = − rHi P−1ri
rHi−1P

−1ri−1

di = P−1ri − βi−1di−1

αi =
rHi P−1ri
dHi Adi

xi+1 = xi + αidi

ri+1 = ri − αiAdi

(3.169)

The resulting preconditioned conjugate gradient method is presented in Algorithm 4.
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Note, the preconditioner is sometimes specified in its factored form P−1 = E−HE−1.

Algorithm 4: Preconditioned Conjugate Gradient

Result: xi

imax = max(imin, n)

x1 = x0

r1 = b−Ax1

for i ∈ [1, imax] do

// tolerance test

if ‖ri‖2 ≤ tol2 then

break

end

// compute preconditioned search direction vector

zi = P−1ri

rz = rHi zi

if i == 1 then

d = z1

else

β = rz / rzold

d = zi + βd

end

// update

t = Ad

αi = rz / dHt

xi+1 = xi + αid

ri+1 = ri − αit

rzold = rz

end
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The space complexity of conjugate gradient is O(n) rather than O(n2) because

only the previous search direction vector is needed when making the new search di-

rection A-orthogonal to all the previous search directions. The time complexity each

iteration is dominated by two matrix-vector products, and so is O(n2) per iteration.

The algorithm is guaranteed to converge after n iterations, so the time complexity per

run is O(n3). This doesn’t seem like an improvement over Gauss-Jordan elimination,

however conjugate gradient gives a sequence of approximate answers. Convergence

is shown to be quite fast, and so conjugate gradient is usually terminated long before

n iterations with good results.

3.4.5 GMRES

An alternative to gradient-based iterative methods is General Minimal Residual

(GMRES), which iteratively minimizes the complex least squares cost function di-

rectly. GMRES only assumes that matrix A is invertible, and is thus a more general

solver than the gradient-based methods presented in the previous sections which as-

sumed a conjugate-symmetric positive-definite matrix. However, reformulating an

ill-posed problem as a well-posed complex least squares problem with regularization

produces a conjugate-symmetric positive-definite matrix, so this isn’t much of an

advantage for image reconstruction.

Recall the complex least squares cost function is

xs = arg min
x∈Cn

‖b−Ax‖2 . (3.170)

Iterate summation Eq. 3.115 can be written in matrix notation as

xi = x0 + Diαi (3.171)
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where Di ∈ Cn×i is a search direction augmented matrix and αi ∈ Ci is a vector of

search scales. Combine these equations to yield

‖ri‖2 = ‖b−Axi‖2 = ‖b−A[x0 + Diαi]‖2 = ‖r1 −ADiαi‖2 . (3.172)

The search directions must be specified to proceed. As with conjugate gradient, a

judicious choice of search direction vectors greatly simplifies the problem.

A deeper understanding of iterative methods can be achieved by thinking in terms

of Krylov subspaces. The i-th Krylov subspace of matrix A and vector u is the

vectorspace spanned by the sequence of vectors generated by repeatedly applying A

to u up to i times

Ki(A,u) ≡ span

(
i⋃

j=0

{
Aju

})
= span

({
u,Au,A2u, . . . ,Aiu

})
. (3.173)

Elements of a Krylov subspace are linearly independent up to some positive integer

which can be smaller than or equal the dimension of the underlying vectorspace. For

both gradient descent and conjugate gradient the search direction vector di is an

element of the i-th Krylov subspace of the first search direction vector d1 = r1

di ∈ Ki(A, r1). (3.174)

This is called the Arnoldi iteration. Furthermore, conjugate gradient built an A-

orthogonal basis out of the search direction vectors which guaranteed the algorithm

would converge after at most n iterations.

GMRES takes a similar tack to conjugate gradient and builds an orthonormal set

of Krylov subspace vectors from Eq. 3.174 such that

〈
d̂i, d̂j

〉
= δij. (3.175)
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The seed search direction is taken to be the initial residual r1, although the residual

can’t be interpreted as a gradient in the case of GMRES. This is acceptable because

the non-zero seed is arbitrary, and is a good choice for the subset of conjugate-

symmetric positive-definite systems that GMRES can solve. In the case this Krylov

subspace fails to span the underlying vectorspace, GMRES will converge in fewer

than n iterations. With this choice of search direction vectors, the search direction

augmented matrix satisfies the recurrence relation

ADi = Di+1Hi+1,i (3.176)

where Hi+1,i ∈ C[i+1]×i is a matrix of expansion coefficients. Because of the Arnoldi

iteration, matrix Hi+1,i is zero below the first sub-diagonal (like an upper Hessenburg

matrix), and is computed as a byproduct of taking projections when making the

search directions orthonormal. Furthermore, the matrix Hi+1,i is related to the next

matrix Hi+2,i+1 by the recurrence relation

Hi+2,i+1 =

Hi+1,i hi+1

0H Hi+2,i+1

 (3.177)

where vector hi+2 ∈ Ci+2 is a new column. The base case is matrix H2,1 ∈ C2×1 .

Returning to the complex least squares cost function Eq. 3.172, use Eq. 3.176

and the identity d̂1 = r1/ ‖r1‖ to write

‖ri‖2 = ‖r1 −ADiαi‖2

=
∥∥∥‖r1‖ d̂1 −Di+1Hi+1,iαi]

∥∥∥2

= ‖Di+1[‖r1‖ ê1 −Hi+1,iαi]‖2

= ‖‖r1‖ ê1 −Hi+1,iαi‖2

(3.178)
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where ê ∈ Ci+1 is the first canonical basis unit vector. The final step follows because

Di+1 is an augmented matrix of orthonormal vectors

‖Diu‖2 = 〈Diu,Diu〉 = uHDH
i Diu = uHIu = uHu = 〈u,u〉 = ‖u‖2 . (3.179)

The problem of minimizing the residual norm with respect to x is replaced by the

equivalent problem of minimizing the residual norm with respect to αi

αi = arg min
α′i∈Ci

‖‖r1‖ ê1 −Hi+1,iα
′
i‖

2
. (3.180)

This equation can be efficiently solved with some manipulation.

Every matrix has a QR decomposition that factors the matrix into a unitary

matrix multiplying a right triangular matrix. The existence of such a decomposition

is easy to establish by considering orthonormalization applied to the columns of a

matrix. For the task at hand consider the QR decomposition of Hi+1,i

Hi+1,i = Qi+1Ri+1,i (3.181)

for unitary matrix Qi+1 ∈ C[i+1]×[i+1] and right triangular matrix Ri+1,i ∈ C[i+1]×i.

Recall the defining property of a unitary matrix is Q−1 = QH , which implies the

columns are orthonormal. Thus the right triangular matrix in the previous equation

can be solved for

QH
i+1Hi+1,i = Ri+1,i =

Ri

0H

 . (3.182)

Matrix Hi+1,i is transformed into matrix Ri+1,i when multiplied by matrix QH
i+1.

Right triangular matrices are trivial to solve by backsubstitution, so this is a highly
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desirable transformation. Rewrite Eq. 3.178 using the proposed QR decomposition

‖ri‖2 = ‖‖r0‖ ê1 −Hi+1,iαi‖2

=
∥∥QH

i+1[‖r0‖ ê1 −Hi+1,1αi]
∥∥2

=
∥∥‖r0‖QH

i+1ê1 −Ri+1,iαi

∥∥2

=

∥∥∥∥∥∥∥
 gi

gi+1

−
Riαi

0


∥∥∥∥∥∥∥

2

.

(3.183)

The residual norm is minimized when

αi = R−1
i gi (3.184)

which implies gi+1 = ‖ri‖.

The QR decomposition is only useful if it is inexpensive to compute. This is shown

to be the case. From recurrence relation Eq. 3.177 only the right-most column

of Hi+1,i needs to be computed each iteration, which is done as a byproduct of

making the search direction vector orthonormal to previous search direction vectors.

Recursion is then used to compute Ri. Consider the base case of Eq. 3.182 when

i = 1  c −s

s∗ c∗


H H1,1

H2,1

 =

R1,1

0

 (3.185)

where the Q2 takes the form of a (Givens) “rotation”

Q2 =

 c −s

s∗ c∗

 c =
H1,1

R1,1

s =
H∗2,1
R1,1

R1,1 =

√
|H1,1|2 + |H2,1|2. (3.186)

To derive a recurrence relation for the QR decomposition, start with the recurrence

relation Eq. 3.177 and incorporate the previous QR decomposition to get the partial
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resultQH
i+1 0

0H 1


Hi+1,i hi+1

0H Hi+2,i+1

 =

Ri+1,i QH
i+1hi+1

0H Hi+2,i+1

 =


Ri ri

0H ρi

0H σi

 . (3.187)

The right hand side is almost right triangular. All that needs to be done is another

rotation on the last two rows. Generalizing from the base case, construct the matrix

Gi+2 ∈ C[i+2]×[i+2] such that

Gi+2 =


Ii 0 0

0H ci −si

0H s∗i c∗i

 where ci =
ρi
τi

si =
σ∗i
τi

τi =

√
|ρi|2 + |σi|2 (3.188)

and left multiply Eq. 3.187 to derive the QR right triangular matrix recurrence

relation 
Ii 0 0

0H c∗i si

0H −s∗i ci




Ri ri

0H ρi

0H σi

 =


Ri ri

0H τi

0H 0

 = Ri+2,i+1. (3.189)

It is seen that only the right-most column of must be computed each iteration. Fur-

thermore this implies the QR unitary matrix recurrence relation

QH
i+2 = GH

i+2

QH
i+1 0

0H 1

 . (3.190)

Taken together, only the right-most column of Hi+1,i and Ri+1,i need to be computed

each iteration, the column of Hi+1,i is computed during orthonormalization, and the

column of Hi+1,i is transformed into the column of Ri+1,i by applying Qi+1 which is

equivalent to a sequence of rotations between pairs of rows.

The GMRES algorithm is now presented in Algorithm 5. Due to the solution

being constructed in a basis, at most n iterations are needed for convergence. Seed the
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Arnoldi process with the residual r1 and compute g1 from the equivalent cost function.

For each iteration several steps must happen. First compute a new search direction

based on the Arnoldi iteration (apply A to the previous search direction vector)

and make it orthonormal to the previous search direction vectors using a stabilized

algorithm, saving the expansion coefficients as the new column of H. Next transform

the H column by applying the sequence of rotations up to the last rotation. Then

compute the current rotation and complete the transformation of the H column into

an R column. Examining the equivalent cost function, vector g must be transformed

by the rotations along with H, but unlike the entirely new column of H, only the

most recent rotation needs to be applied to vector g to update it. Finally, check the

tolerance for early convergence. After the loop the solution vector is constructed by

solving Eq. 3.184 for αi by backsubstitution, and then evaluating the matrix form

of the iterate summation Eq. 3.187. Preconditioning can be incorporated if needed.

The computational complexity of GMRES should be considered. Due to the need

to store all previous search direction vectors to apply orthonormalization, the spatial

complexity is O(n2). This is a major short-coming of GMRES. Many modifications

to the basic algorithm try to circumvent this by periodically restarting the algorithm,

however in this case convergence isn’t guaranteed. The time complexity per iteration

is dominated by a matrix-vector product, and is so O(n2). The time complexity per

run if allowed to iterate a full n times is O(n3). Like conjugate gradient, this seems

to be the same as Gauss-Jordon elimination, however GMRES provides a sequence

of approximate solution vectors that converge quickly, and can often be terminated
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long before a full n iterations. Convergence is more difficult to assess.

Algorithm 5: General Minimal Residual

Result: xi
imax = min(imax, n)
r1 = b−Ax0

d1 = r1/ ‖r1‖
g1 = ‖r1‖ ê1

for i ∈ [1, imax] do
// stabilized arnoldi process
di+1 = Ad̂i
for j ∈ [1.i] do

Hj,i = 〈d̂j,di+1〉
di+1 = di+1 − d̂jHj,i

end
Hi+1,i = ‖di+1‖
d̂i+1 = di+1/ ‖di+1‖
// transform column of H to (almost) column of R
for j ∈ [1, i− 1] do[

Hj,i

Hj+1,i

]
=

[
c∗j sj
−s∗j cj

] [
Hj,i

Hj+1,i

]
end
// compute rotation

τ =
√
|Hi,i|2 + |Hi+1,i|2

ci = Hi,i/τ
si = H∗i+1,i/τ
// complete transform to R[
Hi,i

Hi+1,i

]
=

[
τ
0

]
// transform g[
gi
gi+1

]
=

[
c∗j sj
−s∗j cj

] [
gi
gi+1

]
// tolerance test
if gi+1 ≤ tol then

break
end

end[
Ri

0H

]
= Hi+1,i

αi = R−1
i gi

xi = x0 + Diαi

return xi
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3.5 Summary

This chapter presented different ways to invert the linear forward model to reconstruct

an image. Algorithms and their complexities were derived.

SVD pseudoinverse was briefly discussed. The SVD singular value spectrum can

be used to analyze the quality of a forward model. A flat spectrum indicates low

correlation between measurements which is desirable so every measurement gives

new information, while a steeply falling spectrum indicates the opposite. Truncating

the spectrum can deal with poorly conditioned systems and nullspaces. However an

SVD is expensive to compute for very large systems.

Matched filter reconstruction was presented as a simple and fast approximate

inverse that takes advantage of the statistical properties of a random matrix. It

provides adequate results for little computational cost.

The inverse problem is almost always ill-posed. Complex least squares with L2 reg-

ularization was developed to form a well-posed linear inverse problem with a unique

solution, which results in a conjugate-symmetric positive-definite matrix. While the

well-posed problem can be solved directly with Gauss-Jordon elimination, this is

computationally expensive for very large linear systems and potentially unstable.

Iterative methods become the only viable method for inverting very large linear

systems. These algorithms generate a sequence of approximate solutions, and can

be stopped short of an exact solution. The basic iterative algorithm framework

was discussed, and applied to three algorithms. Gradient descent is conceptually

simple, but has terrible convergence. Conjugate gradient dramatically improved upon

gradient descent by carefully choosing a basis to expand a solution in with remarkable

properties. These two algorithms are based on gradients and require the linear system
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to be conjugate-symmetric and positive-definite, which the complex least squares

matrix is. GMRES was presented as an alternative to gradient-based algorithms,

and can be applied as long as the linear system is invertible.

Other topics tangentially related to image reconstruction are discussed in other

chapters. Notably, APB matrix partitioning is used to slash the time complexity

of matrix multiplication by the imager forward model on GPU-enabled hardware

(Chapter 2). Depth cameras are also used to slash the size of the inverse problem

by identifying a region of interest (Chapter 5). These techniques are invaluable for

reaching the goal of a real-time imaging system.

Finally, additional forward models and reconstruction strategies exist. With some

prepossessing of antenna data, it is possible to use RMA. For a completely different

approach to imaging based on asymptotic series see FAMI.
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Chapter 4

Registration

Registration is the process of estimating the spatial relationship between things.

Accurate registration is a prerequisite to several core metaimager tasks including

antenna registration, RF calibration with a calibration object, depth camera sensor

fusion, and image stitching. There is significant theoretical overlap between the

registration tasks. This chapter describes the mathematics of rigid transformations,

describes a method to estimate the optimal rigid transformation between sets of

points, and describes a constellation concept to experimentally register rigid bodies.

These ideas are then applied to solve the crucial task of antenna registration. Other

applications are discussed in later chapters.

4.1 Rigid Transformations

A rigid body is a physical idealization of a solid object that doesn’t change shape

over time. More formally, a rigid body is a set V of points in R3 that depend on time

V ⊂
{
r(t)|r : R→ R3

}
(4.1)

where the (Euclidean) distances between points r, r′ ∈ V are constant in time

d

dt
‖r(t)− r′(t)‖2

= 0. (4.2)

It follows that the instantaneous configuration of a rigid body is described by an

isometry, which is a transformation that preserves distance. Examples of isometries
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Figure 4.1: Isometries — (a) translation, (b) rotation around an axis, and (c) re-

flection across a plane. Combinations of these are also isometries.

are translations, rotations, reflections, and combinations of these (Fig. 4.1). In general

an isometry on R3 can be represented by an affine map A : R3 → R3 of the form

A(r) = Qr + t (4.3)

for an orthogonal matrix Q ∈ O(3) =
{
M ∈ R3×3|MT = M−1

}
and constant

translation vector t ∈ R3. Exactly in this case the distance between transformed

points is equal to the distance between untransformed points

‖A(r)− A(r′)‖2
= ‖[Qr + t]− [Qr′ + t]‖2

= ‖Q[r− r′]‖2
= ‖r− r′‖2

(4.4)

where the last step follows from the orthogonal matrix identity

‖Qu‖2 = [Qu]TQu = uTQTQu = uTQ−1Qu = uTu = ‖u‖2 . (4.5)

The set of all isometries on R3 is denoted E(3) = {A(r) = Qr + t|Q ∈ O(3), t ∈ R3}.
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Elements of E(3) are not generally linear maps

A(ua+ u′a′) = Q[u′a+ u′a′] + t 6= [Qu + t]a+ [Qu′+ t]a′ = A(u)a+A(u′)a′ (4.6)

but can always be represented as linear maps on 4D projective coordinates (App. B)Q t

0T 1



u

1

 a+

u′

1

 a′
 =

Qu + t

1

 a+

Qu′ + t

1

 a′. (4.7)

Projective coordinates are used in code to internally represent geometry partially

because of this property. However their unique properties are not required for regis-

tration, so this chapter will adopt regular coordinates.

Physically the orthogonal matrix Q ∈ O(3) must not be a reflection because

a rigid body can’t be transformed into its mirror image smoothly in time (a left

hand can’t become a right hand). This is related to the characteristic property that

orthogonal matrices have real determinants with unit magnitude

1 = det(1) = det(QQ−1) = det(QQT ) = det(Q) det(QT ) = det(Q)2 (4.8)

that may equal +1 or −1 by example of an identity and reflection matrix respectively

det(Q) ∈ {1,−1} . (4.9)

This property demonstrates no continuous path can exist between elements of O(3)

with determinants of opposite sign, and thus O(3) is disconnected. Therefore exclude

reflections by restricting O(3) to the set of rotations with determinant +1

SO(3) =
{
M ∈ R3×3| det(M) = 1

}
. (4.10)

The corresponding restricted set of isometries are the rigid transformations

SE(3) =
{
A(r) = Rr + t|R ∈ SO(3), t ∈ R3

}
. (4.11)
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Elements of SE(3) can be interpreted as an active transformation that moves the

points of a rigid body with respect to a stationary orthonormal basis (Fig. 4.2.a),

or equivalently as a passive transformation change of basis between like-handed

orthonormal bases describing stationary points (Fig. 4.2.b). Subscripts are introduced

to aid in the change of basis interpretation

rb = Aba(ra) ≡ Rbara + tba . (4.12)

Figure 4.2: Rigid Transformations — Transformation by Aba ∈ SE(3) can be

interpreted as (a) an active transformation acting on points or (b) a passive trans-

formation acting on bases.

SE(3) has the structure of a mathematical group under functional composition.

Practically this guarantees inverses always exist. This is proven by verifying the 4
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group axioms . Elements of SE(3) are closed under functional composition

Acb(Aba(ra)) = Rcb[Rbara+tba]+tcb = RcbRbara+[Rcbtba+tcb] = Rcara+tca = Aca(ra)

(4.13)

where Rca = RcbRba ∈ SO(3) because det(RcbRba) = det(Rcb) det(Rba) = 1 and

tca = Rcbtba + tcb. This is concisely written with functional composition notation as

Acb ◦ Aba = Aca . (4.14)

Functional composition is always associative

Adc ◦ [Acb ◦ Aba] = [Adc ◦ Acb] ◦ Aba . (4.15)

There exists an identity element Aid ∈ SE(3) with Rid = 1 ∈ SO(3) and tid = 0 ∈ R3

Aid(r) = 1r + 0 = r (4.16)

which is both a left and right identity element

Aid(Aba(ra)) = 1[Rbara + tba] + 0 = Rbara + tba = Aba(ra) (4.17)

Aba(Aid(ra)) = Rba[1ra + 0] + tba = Rbara + tba = Aba(ra) (4.18)

so

Aid ◦ Aba = Aba ◦ Aid = Aba . (4.19)

Also for all Aba ∈ SE(3) there exists an inverse element A−1
ba ∈ SE(3)

A−1
ba (rb) = R−1

ba [rb − tba] = ra (4.20)

that is verified to be both a left and right inverse of Aba

A−1
ba (Aba(ra)) = R−1

ba [[Rbara + tba]− tba] = 1ra + 0 = Aid(ra) (4.21)

Aba(A
−1
ba (rb)) = Rba[R

−1
ba [rb − tba]] + tba = 1rb + 0 = Aid(rb) (4.22)
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so

A−1
ba ◦ Aba = Aba ◦ A−1

ba = Aid . (4.23)

An inverse can be written as a forward transformation with the subscripts swapped

Aab = A−1
ba (4.24)

by taking Rab = R−1
ba and tab = −R−1

ba tba, which lends flexibility to the basis subscript

notation and is used to simplify expressions when composing several transformations.

Together, Eq. 4.14, Eq. 4.15, Eq. 4.19, and Eq. 4.23 imply SE(3) is a group under

functional composition. It is easy to verify O(3), SO(3), and E(3) are also groups

under functional composition.

In summary, the position and orientation of rigid bodies are described by rigid

transformations. Rigid transformations can be interpreted either as actively trans-

forming geometry or passively transforming bases. Notation was introduced to aid

in the change of basis interpretation. Also, rigid transformations form a group under

functional composition. These facts establish the basic mathematics of rigid trans-

formations. Applications involving rigid transformations can now be considered.

4.2 Orthogonal Procrustes Analysis

An important registration problem is computing an optimal rigid transformation

Aba ∈ SE(3) that maps a finite set of rigid points1 ai ∈ Va ⊂ R3 to a paired set

of target rigid points bi ∈ Vb ⊂ R3 for indices i ∈ [1, N ] ⊂ Z, as illustrated in

Fig. 4.3.a. Orthogonal Procrustes Analysis [Sch66] defines an optimal solution

1In this section points ra and rb will be denoted as a and b to economize on subscripts.
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as one that minimizes a geometrically motivated cost function. It is named after a

legendary Greek host known to stretch and cut his guests to fit his ill-fitting beds.

Figure 4.3: Orthogonal Procrustes Analysis – (a) The rigid transformation

Aba ∈ SE(3) that minimizes the total square distance between points Aba(ai) ∈ R3

and bi ∈ R3 is sought. (b) Rotation and translation are decoupled by introducing

suitable rigid reference points a0 and b0 that satisfy b0 = Aba(a0). (c) Assuming

optimal reference points, the optimal rotation Rba is analytically determined.

The first step in formulating an optimization problem is to propose a cost function.

For the task at hand it is convenient to collect all points into augmented matrices to

compactly write all transformations in a single matrix equation

Aba(A) ≡ RbaA + Tba =

[
Aba(a1) Aba(a2) . . . Aba(aN)

]
(4.25)

where A,B,Tba ∈ R3×N are

A =

[
a1 a2 . . . aN

]
, B =

[
b1 b2 . . . bN

]
, Tba =

[
tba tba . . . tba

]
.

(4.26)
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Take the difference between all paired target points and transformed points

B− Aba(A) =

[
b1 − Aba(a1) b2 − Aba(a2) . . . bN − Aba(aN)

]
. (4.27)

While an exact solution mapping A to B would be desirable such that

B− Aba(A) = 0 (4.28)

there is no guarantee such a solution exists. Instead an approximate solution is

defined as one that “minimizes the difference” between the vectors in a way consistent

with an exact solution. Abstract vectorspaces do not come equipped with a way

to compare how similar two vectors are. However for geometry, the norm of the

difference between points i.e. the Euclidean distance is available and is an obvious

albeit arbitrary means of comparison. For reasons of differentiability the square

distance is preferred. It follows a reasonable way to compare N pairs of points is

by the total square distance between the pairs, which is equivalent to the square

distance on R3N . To compute this quantity for Eq. 4.27 define the real Frobenius

inner product 〈·, ·〉F : RM×N × RM×N → R as (assuming an orthonormal basis)

〈X,Y〉F ≡
∑
i

∑
j

XijYij (4.29)

so the induced real Frobenius norm ‖·‖F : RM×N → R is defined by

‖X‖2
F ≡ 〈X,X〉F . (4.30)

Orthogonal Procrustes Analysis seeks the rigid transformation that minimizes the

cost function of total square distance between the target and transformed points

Aba = arg min
A∈SE(3)

‖B− A(A)‖2
F . (4.31)
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Keep in mind this is just a different way to write

Aba = arg min
A∈SE(3)

n∑
i=1

‖bi − A(ai)‖2 (4.32)

and emphatically minimizes the total square distance, and not the total distance.

The cost function can be analytically minimized. A key insight is that rigid points

transform with a rotation and translation per Eq. 4.12, while differences between rigid

points transform with the rotation only

A(u)− A(u′) = [Ru + t]− [Ru′ + t] = R[u− u′]. (4.33)

This observation is used to decouple the problem of finding the optimal rotation from

the optimal translation vector by introducing two undetermined rigid reference points

a0 ∈ R3 and b0 ∈ R3 (Fig. 4.3.b). Start by decomposing the augmented matrix A

into the sum of augmented matrices A∆,A0 ∈ R3×N

A = A∆ + A0 (4.34)

where the columns of A∆ are the vector differences of the points ai minus a0

A∆ =

[
a1 − a0 a2 − a0 . . . an − a0

]
(4.35)

and the columns of A0 are N copies of reference point a0

A0 =

[
a0 a0 . . . a0

]
. (4.36)

The reference point a0 is undetermined besides transforming like a rigid point. The

augmented matrix B is similarly decomposed with an undetermined rigid reference

point b0

B = B∆ + B0 . (4.37)
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The reference points act as rotation centers by constraining that a0 maps to b0

B0 = RA0 + T. (4.38)

Translation vector t can then be written in terms of points a0,b0 and rotation R

T = B0 −RA0 (4.39)

tba = b0 −Rbaa0 (4.40)

and eliminated from the cost function by substituting Eq. 4.34, Eq. 4.37, and Eq. 4.39

into Eq. 4.31

Aba = arg min
A∈SE(3)

‖B− A(A)‖2
F

= arg min
A∈SE(3)

‖[B∆ + B0]− [R[A∆ + A0] + T]‖2
F

= arg min
A∈SE(3)

‖[B∆ −RA∆] + [B0 −RA0]−T]‖2
F

= arg min
A∈SE(3)

‖B∆ −RA∆‖2
F .

(4.41)

This last equation has the same form as a simpler problem (Fig. 4.3.c) of finding the

optimal rotation Rba that maps the set of vectors A∆ to the paired set of vectors B∆

Rba = arg min
R∈SO(3)

‖B∆ −RA∆‖2
F . (4.42)

Setting aside the issue of the optimal choice of reference points, this cost function

can be analytically minimized for any A∆ and B∆ and the optimal rotation found.

Later if optimal reference points are chosen, the rotation determined by Eq. 4.31 and

Eq. 4.42 will coincide.

The rotation problem is solved by utilizing the Singular Value Decomposition

(SVD) . The following identity will be helpful

〈XY,Z〉F =
〈
Y,XTZ

〉
F

=
〈
X,ZYT

〉
F

(4.43)
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and is verified using index notation

∑
i

∑
j

∑
k

XikYkjZij =
∑
k

∑
j

Ykj
∑
i

XikZij =
∑
i

∑
k

Xik

∑
j

ZijYkj. (4.44)

First temporarily relax the set of acceptable solutions of Eq. 4.42 from SO(3) to

O(3), and expand the norm in terms of inner products

Qba = arg min
Q∈O(3)

‖B∆ −QA∆‖2
F

= arg min
Q∈O(3)

〈B∆ −QA∆,B∆ −QA∆〉F

= arg min
Q∈O(3)

[〈B∆,B∆〉F − 〈B∆,QA∆〉F − 〈QA∆,B∆〉F + 〈QA∆,QA∆〉F ]

= arg min
Q∈O(3)

[〈B∆,B∆〉F − 2 〈B∆,QA∆〉F + 〈A∆,A∆〉F ]

= arg max
Q∈O(3)

〈B∆,QA∆〉F .

(4.45)

The last step recasts the minimization problem into a maximization problem by rec-

ognizing that only the negative term depends on Q. This expression is manipulated

using Eq. 4.43 and an SVD factorization

Qba = arg max
Q∈O(3)

〈
B∆AT

∆,Q
〉
F

= arg max
Q∈O(3)

〈
UΣVT ,Q

〉
F

(SVD factorization)

= arg max
Q∈O(3)

〈
Σ,UTQV

〉
F

(4.46)

where matrix B∆AT
∆ is factored by SVD

B∆AT
∆ = UΣVT . (4.47)

The SVD of a real matrix is composed of orthogonal matrices U and V and a diagonal

matrix Σ of real non-negative singular values. Q is an orthogonal matrix, so the
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product UTQV is also an orthogonal matrix. Σ is a diagonal matrix, so only the

diagonal components of UTQV contribute to the inner product in Eq. 4.46. The

components of an orthogonal matrix are constrained to the interval [−1, 1] ⊂ R,

and the identity matrix 1 is an orthogonal matrix with all ones on its diagonal. By

inspection it must be that UTQV = 1 so the optimal orthogonal matrix Qba is

Qba = UVT ∈ O(3). (4.48)

Orthogonal matrices with det(Q) = −1 must be excluded when considering rigid

transformations. The SVD is customarily organized such that the singular values of Σ

monotonically decrease. Ensure a rotation matrix by reflecting across the dimension

with the smallest penalty, the last singular value, if necessary

Rba = U


1 0 0

0 1 0

0 0 det(UVT )

VT ∈ SO(3) . (4.49)

This gives an analytical solution to the optimal rotation Rba that maps A∆ to B∆.

However to determine the optimal rigid transformation Aba that maps A to B, it is

still necessary to identity the reference vectors a0 and b0.

The 6 degrees of freedom of R and t in the cost function have effectively been

rewritten in terms of a0 and b0. A condition on the reference points is derived by

taking the gradients of the cost function with respect to the reference points and

setting the results to the zero vector. Note that the components of R and t depend

on the reference points but will have zero derivatives when optimized. Start by taking

the gradient with respect to b0 of the rewritten cost function Eq. 4.42 and set the
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result equal to the zero vector

∇b0

N∑
i=1

‖[bi − b0]−R[ai − a0]‖2 = 0. (4.50)

Evaluate the expression using index notation

∂

∂b0l

N∑
i=1

3∑
j=1

[
[bij − b0j]−

3∑
k=1

Rjk[aik − a0k]

]2

=
N∑
i=1

3∑
j=1

2

[
[bij − b0j]−

3∑
k=1

Rjk[aik − a0k]

]
∂

∂b0l

[
[bij − b0j]−

3∑
k=1

Rjk[aik − a0k]

]

=
N∑
i=1

3∑
j=1

2

[
[bij − b0j]−

3∑
k=1

Rjk[aik − a0k]

]
[−δlj]

= −2

[[
N∑
i=1

bil −Nb0l

]
−

3∑
k=1

Rlk

[
N∑
i=1

aik −Na0k

]]

= −2N

[
[〈bil〉 − b0l]−

3∑
k=1

Rlk[〈aik〉 − a0k]

]
(4.51)

and convert the result to matrix notation

− 2N [[〈bi〉 − b0]−R[〈ai〉 − a0]] = 0. (4.52)

Likewise, take the gradient with respect to a0 of the rewritten cost function Eq. 4.42

and set the result equal to the zero vector

∇a0

N∑
i=1

‖[bi − b0]−R[ai − a0]‖2 = 0. (4.53)
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Once again evaluate the gradient in index notation

∂

∂a0l

N∑
i=1

3∑
j=1

[
[bij − b0j]−

3∑
k=1

Rjk[aik − a0k]

]2

=
N∑
i=1

3∑
j=1

2

[
[bij − b0j]−

3∑
k=1

Rjk[aik − a0k]

]
∂

∂a0l

[
[bij − b0j]−

3∑
k=1

Rjk[aik − a0k]

]

=
N∑
i=1

3∑
j=1

2

[
[bij − b0j]−

3∑
k=1

Rjk[aik − a0k]

]
[Rjl]

= 2

[
3∑
j=1

Rjl

[
N∑
i=1

bij − nb0j

]
−

[
N∑
i=1

ail −Na0l

]]

= 2n

[
3∑
j=1

Rjl [〈bij〉 − b0j]− [〈ail〉 − a0l]

]
(4.54)

and convert the result to matrix notation

2N [RT [〈bi〉 − b0]− [〈ai〉 − a0]] = 0. (4.55)

Both Eq. 4.52 and Eq. 4.55 result in the same condition

〈bi〉 −R 〈ai〉 = b0 −Ra0. (4.56)

This equation is always satisfied if the average points are taken as the reference points

a0 = 〈ai〉 (4.57)

b0 = 〈bi〉 . (4.58)

In some cases other choices of reference points may satisfy Eq. 4.56. For instance,

when an exact solution exists, any of the paired points ai and bi works. However

the average points will always be optimal. With optimal reference points in hand,

the optimal rotation Rba and translation vector tba are determined, and the optimal

rigid transformation Aba is found.
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In summary, the optimal rigid transformation Aba mapping points A to B is

computed by taking the average points 〈ai〉 and 〈bi〉 as reference points a0 and b0

(Eq. 4.57 and 4.58), then computing the SVD of the matrix B∆AT
∆ (Eq. 4.47), then

computing the optimal rotation matrix Rba (Eq. 4.49), and then finally computing

the optimal translation vector tba (Eq. 4.39). This result is recorded in Algorithm 6.

The boxed equations are encapsulated into a function to hide the internal complexity

of this useful result

Aba = Procrustes(A,B) . (4.59)

Algorithm 6: Orthogonal Procrustes Analysis

input : A,B ∈ R3×N

output: Aba ∈ SE(3)

a0 = 〈ai〉

b0 = 〈bi〉

A∆ = A−A0

B∆ = B−B0

[U,Σ,V] = svd(B∆AT
∆)

Rba = U diag(1, 1, det(UVT )) VT

tba = b0 −Rbaa0

Aba(r) = Rbar + tba

The order of the columns in the augmented matrices A and B is significant. If

the points are unordered, a brute force method to determine the optimal order is to

consider all permutations of the columns of A

Aσ =

[
aσ(1) aσ(2) . . . aσ(N)

]
where σ ∈ SN (4.60)
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and select the permutation that minimizes the cost function

Aba = min
σ∈SN

[
arg min
A∈SE(3)

‖B− A(Aσ)‖2
F

]
. (4.61)

Aba = min
σ∈SN

Procrustes(Aσ,B) (4.62)

The time complexity of searching permutations is O(N !), so this method is only

suitable for about 6 ≤ N . Bundle adjustment is the appropriate technique when

dealing with larger numbers of unordered points, but requires more mathematical

apparatus. The unordered version of the Procrustes function is denoted

Aba = Procrustes2(A,B) . (4.63)

For Orthogonal Procrustes Analysis to guarantee a unique solution, some condi-

tions on the points must be satisfied. The affine span of a set of vectors V is the

span of the set V ′ = {v′ = v − v0|v ∈ V − {v0}} for some reference vector v0 ∈ V .

A unique solution is guaranteed if Va and Vb affinely span R3. These conditions en-

sure that the matrix B∆AT
∆ is full rank so a unique rotation is defined. Additionally

when considering unordered points there must not be any rotational symmetry, or

the wrong permutation could be selected.

OPA can be extended to include a scaling factor [Roh05]. In this work all position

data is assumed to be expressed in meters, so the scaling factor is always 1.

4.3 Constellation Registration

Consider the problem of experimentally registering a rigid body with a positioning

system that measures the positions of point-like targets. One idea is to affix a set
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of targets in a known pattern to the rigid body, and then estimate the rigid trans-

formation between the known pattern data and measured positioning system data

(Fig. 4.4). This idea is the cornerstone of constellation registration.

Figure 4.4: Constellation Registration

Assume the positioning system sensor is sensitive to small point-like targets called

fiducials. The sensor measures and reports fiducial position data relative to a sensor-

defined basis d. This basis is assumed to be right-handed, orthonormal, and have

coordinates in units of meters. The position data is represented as Nd ≥ 0 ∈ Z

coordinate vectors organized into an augmented matrix D ∈ R3×Nd in no particular

order. Raw position data may not satisfy these assumptions, but it is always possible

to achieve them with a small amount of extra processing. Measurement data will

necessarily contain noise and have limited range and resolution.

A constellation is a set of rigid points arranged in a recognizable pattern for

use in registration. This concept bridges three different realizations: a nominal,
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physical, and measured constellation. The nominal constellation (Fig. 4.4.a) is the

known position data relative to a constellation-defined basis c. Like basis d, this

basis is assumed to be right-handed, orthonormal, and have coordinates in units

of meters. The position data is represented by Nc ≥ 3 ∈ Z coordinate vectors

organized into an augmented matrix C ∈ R3×Nc . Points in C must affinely span

R3 and be rotationally asymmetric to guarantee unique registration. The physical

constellation (Fig. 4.4.b) is the set of fiducials that physically realizes the nominal

constellation. These fiducials are affixed to the rigid body being registered. Their

positions are similar to the nominal constellation up to a rigid transformation to

within manufacturing tolerances. The measured constellation D (Fig. 4.4.b) is the

sensor data of the physical constellation, which must necessarily have Nd = Nc points.

Suppose a nominal constellation C is physically realized with fiducials and affixed

to a rigid body. A positioning system sensor measures the physical constellation and

reports the measured constellation position data D. The optimal rigid transformation

Adc ∈ SE(3) that maps constellation C to sensor data D is then

Adc = Procrustes2(C,D) . (4.64)

Equivalently Adc is the change of basis from c to d. Therefore Adc fully represents

the registration information of the rigid body with respect to the sensor. Take a

moment to consider this result. Three different realizations of the same constellation

are identified to experimentally determine the optimal rigid transformation from the

rigid body basis to the sensor basis. The mathematical correspondence between the

bases is established without either basis physically existing.

The nominal constellation can either be designed or measured. Designing the

constellation is useful for mass production and high-precision registration, while mea-
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suring the constellation is useful for rapid experimentation in the lab. In either case,

constellation points should be as far apart as possible to geometrically reduce the

effects of measurement noise. It can be helpful to make the constellation basis c

physically accessible by choosing points in C to coincide with the origin and basis

vectors. This makes it easier to understand and debug registration results.

Often it is convenient to define a global basis g that differs from the positioning

system sensor basis d. This is particularly useful when registering multiple rigid-

bodies. Suppose m ≥ 2 rigid-bodies indexed by i are registered with constellations

Ci against sensor data Di resulting in rigid registration Adc,i respectively

Adc,i = Procrustes2(Ci,Di). (4.65)

Select the j-th constellation basis to serve as the global basis g. The change of

basis from sensor basis d to global basis g is then simply the inverse of the j-th

registration transformation, that is Agd ≡ A−1
dc,j. Eliminate references to sensor basis

d by composing Agd with the other registration transformations

Agc,i = Agd ◦ Adc,i . (4.66)

In this way the constellation basis of any registered rigid body can serve as the global

basis. Moreover all physical and mathematical traces of the positioning system can

be removed from the imaging system once registration is complete, which simplifies

implementation.

4.4 Antenna Registration

The primary imager registration task is antenna registration. The imaging forward

model (Ch. 2) depends on the E fields of the transmit and receive antennas in a
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given imaging volume

Hij = Erx,i(rj, ωi) · Etx,i(rj, ωi)∆Vj. (4.67)

Obviously the fields will depend on the position and orientation of the antennas

relative to the imaging volume. Therefore the antennas must be registered with the

imaging volume. Furthermore, the antenna fields are computed from near field scan

(NFS) measurements. The spatial relationship between an antenna and its intangible

NFS has not been established. This becomes an issue when relocating an antenna

from the scanning environment, as only the antenna can be observed and registered

at a later time. Therefore a NFS must be registered with its antenna. By registering

NFSs with their antennas, and registering antennas with an imaging volume, the

antenna fields within the imaging volume can be modeled from the NFSs.

This section develops antenna registration in two major parts. First, NFS regis-

tration is discussed where a NFS is registered to its antenna using an RF constellation.

Second, array registration is described where all antennas in an array are simultane-

ously registered using photogrammetry constellations. A summary of the full antenna

registration model then follows.

4.4.1 NFS Registration

A near field scan (NFS) measures the fields radiated by an antenna on an invisible

2D surface (Fig. 4.5), which permits modeling the fields radiated anywhere. A NFS

must be registered with its antenna if the antenna is to be moved from the scanning

environment. This section describes how to use sub-wavelength radiating elements

on the antenna as RF fiducials. These are located by using the NFS to model

the fields in a volume containing the antenna and searching for points of high field
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intensity in the expected places. The 3D field data is processed to precisely estimate

the location of the RF fiducials. Constellation registration is then applied to register

the NFS with its antenna.

Figure 4.5: Antenna Near Field Scan

The Ch. 2 antenna model is not suitable for computing the fields in the half-

space bounded by the scan plane containing the antenna. The antenna model invokes

equivalence principles and image theory that trades information in the antenna half-

space for mathematical simplicity on the boundary plane; the fields are mirrored

across the plane, but only magnetic surface current densities radiating in freespace

exist on the plane. Modeling the fields in the vicinity of the antenna requires a

different approach.

The Angular Spectrum Method (ASM) relates coplanar slices of a field com-

posed of plane waves restricted to k-vectors with the same magnitude that lie on one

side of the slice plane (Fig.4.6). This sounds complicated, but this is the exact situ-
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Figure 4.6: Angular Spectrum Method

ation for an antenna being driven at a single frequency f and radiating in freespace

through a NFS plane and out to infinity (assuming no reflections!). Practically speak-

ing, given a NFS, the fields can be backpropagated with the ASM to the volume

surrounding an antenna. Consider the electric field in rectangular coordinates

E(x, y, z) = x̂Ex(x, y, z) + ŷEy(x, y, z) + ẑEz(x, y, z). (4.68)

Given the electric field E(x, y, 0) on the z = 0 plane, the field at E(x, y,∆z) is sought.

Start by taking the 2D Fourier transform of E in the xy-plane at z = 0

E(kx, ky, 0) = Fxy(E(x, y, 0)). (4.69)

For any wavevector in the plane, kz is determined by the magnitude of k

kz = (k2 − k2
x − k2

y)
1
2 . (4.70)

The requirement that the field only have k-vectors on one side of the plane ensures

kz is uniquely determined. A key insight is that the Fourier components of coplanar
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field slices separated by ∆z are the same up to a phase change of φ = −kz∆z

E(kx, ky,∆z) = E(kx, ky, 0)e−jkz∆z. (4.71)

This result is most easily understood in terms of a single plane wave, as illustrated in

Fig. 4.6. The plane wave magnitude is the same at any two slices, but the phases are

different in a way that depends on the direction of the wave and distance between the

slices. The inverse Fourier transform is applied to yield the field at the slice z = ∆z.

E(x, y,∆z) = F−1
xy (Fxy(E(x, y, 0))e−jkz∆z) (4.72)

Implementing the ASM on computer takes some care, as Fourier transforms must

be appropriately mapped to discrete Fourier transforms for numeric computation.

Assume the NFS is finely enough sampled to satisfy the sampling theorem, and large

enough to capture the high-magnitude parts of the field. First, field samples should

be modeled as being at the center of a 2D rectangular ”pixel”. Second, the NFS

margins should be padded with zeros to mitigate aliasing. Third, k-space support in

the xy-plane should be limited to radius k

k2
x + k2

y ≤ k2 (4.73)

with components that exceed this limit zeroed out. To relate indices to continuous

quantities, the following relationship is helpful

∆kx =
2π

Nx∆x
(4.74)

where Nx is the number of sample points and ∆x the step size along the x-axis. A

similar equation applies along the y-axis. Typically ∆x = ∆y for NFSs.

NFS registration is now described. An antenna equipped with a RF constellation

is measured by NFS at several frequencies. The NFS is used to compute the fields
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Figure 4.7: RF Fiducial Position Estimation

in the volume containing the antenna by ASM. ASM only considers one frequency

at a time, so for multiple frequencies only the maximum field magnitude across all

frequencies is recorded for each voxel. The result is upsampled. The RF fiducial po-

sitions are then ready to be estimated (Fig. 4.7.a). A nominal antenna constellation

Ca is specified and a guess is made for the registration. Small search volumes are

constructed where fiducials are expected to be found (Fig. 4.7.b). For each search

volume the maximum field value and position of that value are found. Then 3D flood

fills are computed starting at each maximum position and given a lower threshold

that is some fraction of the maximum (i.e. 0.5) (Fig. 4.7.c). The fills result in

masks of connected regions of high intensity. To isolate the point-like RF fiducials, a

weighted average over each fill is taken

ravg =
1

M

∫
Vfill

‖E‖2 rdV where M =

∫
Vfill

‖E‖2 dV. (4.75)

This yields measured constellation Ds. Finally constellation registration is applied
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to register the NFS basis s with the antenna basis a to get rigid transformation Asa

Asa = Procrustes2(Ca,Ds). (4.76)

NFS registration is shown in Fig. 4.8.

Figure 4.8: NFS Registration

4.4.2 Array Registration

An array of antennas are assembled to form an aperture. Per the forward model, the

antennas must be registered with an imaging volume to model their fields within the

imaging volume. This section describes an array registration strategy that works by

processing photogrammetry data and applying constellation registration.

Registration error analysis indicates antenna centers should be located to within

1.0 mm accuracy over the extent of a 2.0 m × 2.0 m aperture to minimize image

degradation (4.9) [OIL+16]. Few registration options are available that satisfy this
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Figure 4.9: Array Registration Error — Simulated registration error. Cross-range

registration error weakly affects image quality (top) while range registration error

strongly affects image quality (bottom) due to the phase of antenna fields changing

most rapidly in the direction of propagation.
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requirement. One option is to design the array registration and manufacture an ar-

ray with precision machining. However this lends itself to high per-unit cost and is

not a robust solution. Another option is to build an array and then measure the

array registration with photogrammetry. Photogrammetry is the art of using pho-

tography to estimate geometry. The microscopic wavelength of visible light and high

resolution of digital camera sensors makes highly accurate and precise 3D position

measurements on everyday scales possible and economical. Conveniently, commercial

photogrammetry systems are available that meet the requirements of the imager.

Figure 4.10: Creaform MaxSHOT 3D

A Creaform MaxSHOT 3D (Fig. 4.10) photogrammetry system was purchased
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with a specified volumetric accuracy of 0.025 mm/m 2. The MaxSHOT 3D measures

the 3D positions of small circular reflective fiducials using a set of photos taken

with a camera. These fiducials are used in several ways as illustrated in Fig. 4.11.

There are two types of fiducials; uncoded fiducials and coded fiducials. Uncoded

fiducials are stickers representing a single fiducial. Coded fiducials are cards with a

unique constellation and numeric identifier. Coded fiducials are also found on three

registration props that determine the photogrammetry coordinate system origin and

calibrate measurement scale.

Figure 4.11: Creaform MaxSHOT 3D Fiducials

Operation of the MaxSHOT 3D is a multistep process. First, uncoded and coded

fiducials are affixed to a scene. Coded fiducials should be scattered throughout the

scene to help establish correspondences between photos in post-processing. Next,

the registration props are placed in the scene to set the origin and calibrate scale.

2https://www.creaform3d.com/en/maxshot-3d-g1-scanner
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Then a set of about 100 photos of the scene is captured from a variety of positions

and orientations. It is important that the scene is not changed during this process.

For each photo, the camera illuminates the scene with a flash that the fiducials are

designed to strongly retroreflect and that the camera filter is designed to selectively

pass, resulting in a high-contrast photo of bright fiducials on a dark background. This

makes detecting fiducials and estimating their 2D positions easy. Finally, a computer

finds correspondences between photos and applies bundle adjustment [TMHF99] to

the 2D position data to simultaneously solve for all fiducial 3D positions and camera

poses relative to the origin. The results are recorded in a text file. The entire process

takes about 15 minutes in the lab assuming uncoded fiducials have already been

placed.

Figure 4.12: Array Photogrammetry Fiducials

Array registration using the photogrammetry system is now considered. A constel-

lation registration strategy was adopted using constellations of uncoded photogram-
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metry fiducials (Fig. 4.12). The need to register multiple antennas at once introduces

the need to segment photogrammetry data into multiple constellations and the need

to identify constellations from a library of multiple known constellations.

Figure 4.13: Array Photogrammetry Data

Segmenting photogrammetry data into constellations is the first task (Fig. 4.13).

The constellations are seen to be in close proximity to each other. Let Dp ⊂ R3

be a set of fiducials positions measured by photogrammetry. A basic but reliable

segmentation strategy is to group fiducials into a constellation if they are within a

ball. The i-th coded fiducial can be used to define ball center point ri, and the ball

radius Ri can be specified. All uncoded fiducials within the ball are elements of set

Dp,i representing a measured constellation

Dp,i =
{
r ∈ Dp| ‖r− ri‖2 ≤ R2

i

}
. (4.77)

Measured constellation points are packed into augmented matrix Dp,i for analysis.
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Identifying each measured constellation from a library is the second task. A

brute force strategy is employed. Consider a set of constellations L (the library).

For each measured constellation, constellation registration is applied for each library

constellation, and the library constellation that results in the smallest error is defined

to be the match

Apl,i = min
Cl∈L

Procrustes2(Cl,Dp,i). (4.78)

Constellations must have the same number of fiducials to match, and matches with

high registration error print warnings. The library basis l can represent many things.

In the case of antennas, relabeling it a is appropriate, so the rigid transform is Apa,i.

The above ideas work well to register a small array, but using coded fiducials to

define grouping centers does not scale. To alleviate this issue, library entries contain

a list of child grouping center points and radii. In this way a single coded fiducial can

be used to register a parent constellation, and then locate the grouping regions of

several child constellations relative to it. The experimental imaging system uses this

feature to simplify registering antenna modules. Each module is given a constellation

which is found with a coded fiducial, and the child antenna constellations are found

using library information.

Originally it was intended that every antenna have a unique constellation. This

would have allowed an antenna to be identified by its constellation, and the con-

stellation could be given a name associated with the NFS file for that antenna. A

miscommunication resulted in all transmit antennas sharing the same constellation,

and all receive antennas sharing the same constellation. To associate each antenna

with its unique NFS file, the option for a parent to override its child constellation

names was introduced.
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Figure 4.14: Array Registration

With these considerations, the complete array registration algorithm is now de-

scribed in detail. Assume library data, photogrammetry data, and a list of coded

fiducial numbers and grouping radii are given. The algorithm works using a stack

of groups to be processed. The stack is initialized by pushing the specified coded

fiducial positions and grouping radii. While the stack is not empty, the algorithm

loops. The loop starts by pulling the next group off the stack. Next, fiducials are

grouped into a constellation based on the grouping center point and grouping radius.

Then, the constellation is analyzed using constellation registration against all library

entries with the same number of constellation points. The library entry that results

in the lowest error is defined to be the match. At this point, if a name override for

the group exists, it replaces the matched name. If no match has been made, then a

warning is printed and no registration information is recorded. Otherwise the regis-

tration information for the group is recorded. If registration error is high, a warning
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is printed. A recursion guard asserts the group isn’t it’s own child. Finally, any

child groups are transformed using the newly computed registration and pushed onto

the stack. The algorithm outputs group information (matching library index, rigid

transformation Apl, registration error, and name) in the order it was processed. The

result is visualized in Fig. 4.13.

4.4.3 Summary

Antenna registration for an antenna equipped with both a RF constellation and

photogrammetry constellation is summarized in Fig. 4.15. First, the antenna is mea-

Figure 4.15: Imager Registration

sured in NFS basis s, which is registered to antenna basis a with the RF constellation

built into the antenna, resulting in rigid transformation Aas. Next, the antenna is

installed as the i-th antenna in an array that forms an aperture, and the aperture

is measured with photogrammetry relative to basis p. The photogrammetry data is
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segmented into constellations. The antenna basis a is registered to photogrammetry

basis p with the photogrammetry constellation built into the antenna, resulting in

rigid transformation Apa,i. Antenna registration relative to photogrammetry basis p

is fully described by

Aps,i = Apa,i ◦ Aas,i. (4.79)

It is convenient to eliminate references to photogrammetry basis p by specifying

some global basis g that has greater significance to the imager using rigid transfor-

mation Agp

Aga,i = Agp ◦ Apa,i. (4.80)

Any choice of g works. In the lab an antenna roughly in the center of the aperture

was chosen to serve as global basis g; in this case Agp = A−1
pa,j for the j-th antenna

basis.

Putting this together, the complete registration equation for the i-th antenna is

Ags,i = Agp ◦ Apa,i ◦ Aas,i . (4.81)

which maps scan basis s to antenna basis a to photogrammetry basis p to global

basis g.
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Chapter 5

Region of Interest

The previous chapters describe a functional RF imaging system that can measure

people walking through a security screening volume in real-time and reconstruct

detailed images of that volume in minutes using a workstation. The image recon-

struction times as they stand are too long for security screening applications, but

short enough to encourage refining the underlying techniques in pursuit of a solution.

This chapter describes how to reduce image reconstruction times by introducing a

region of interest (ROI) that restricts image volumes to only foreground objects,

making the image reconstruction problem smaller and thus faster to solve. Depth

cameras are integrated into the RF imaging system to realize this idea.

Figure 5.1: ROI Concept
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Image reconstruction time should depend on the number of voxels N in the image,

where more voxels correspond to longer reconstruction times. This is true for the

linear imaging model described in Ch. 2 and Ch. 3. An obvious idea to reduce image

reconstruction time is to reduce the number of voxels in the reconstructed image.

Voxel volume is set by the imager configuration, so the total image volume must be

reduced to reduce N . It becomes natural to ask what exactly determines the total

volume of an image?

Figure 5.2: g = H f

A key observation about the forward model is only voxels in the RF foreground

contribute to the measurement. Voxels not in the RF foreground (i.e. part of the RF

background or air) will have components equal to zero in the scene vector f . These

voxels and their corresponding columns in measurement matrix H can be eliminated

without affecting measurement vector g. Thus an image volume must include at

minimum all voxels occupied by objects in the RF foreground.

There is tension between wanting small total image volume and wanting the

ability to form images anywhere within a large volume. The imaging forward model
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is generally much more computationally expensive to build than it is to apply, and it

is computationally infeasible to build the measurement matrix on the fly. Therefore

it is necessary to build H before imaging. The location of foreground objects is

not known before imaging, so the forward model is built over a larger volume than

a single image is expected to occupy. It is desirable to compute the model over a

large volume to maximize the value of the imaging hardware. Unfortunately a large

imaging volume results in a large forward model and slow reconstruction time.

An economical solution is to use depth cameras to identify voxels in the RF fore-

ground to reduce the size of a pre-computed forward model. Images are reconstructed

over the ROI only. This is an efficient form of L0 regularization that constrains the

number of non-zero voxels with a prior. As long as the number of measurements is

comparable or more than the number of voxels in the ROI, image quality should be

good.

This chapter develops the ROI concept in four sections. The first section describes

the depth camera hardware and depth image. The second section develops a method

to register depth cameras with the RF imaging system. The third section describes

how to use registered depth cameras to generate a ROI. The fourth section describes

how to modify the image reconstruction algorithms to use the ROI.

Additional avenues for reducing image reconstruction times exist. Accelerating

the forward model is discussed in Ch. 2. Accelerating the image reconstruction algo-

rithms is discussed in Ch. 3. External to this work, FAMI [MYS17a] demonstrates

real-time imaging for security screening using a different forward model and image

reconstruction algorithm also with a depth signal prior.
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Table 5.1: Depth Camera Specifications [Zha12][SLK15]

Parameter Kinect 1 Kinect 2

Color Resolution 640× 480 1920× 1080

Color FoV 62.0◦ × 48.6◦ 70.6◦ × 60.0◦

Depth Resolution 320× 240 512× 424

Depth FoV 57.0◦ × 43.0◦ 70.6◦ × 60.0◦

Range [0.8, 4.0]m [0.5, 4.5]m

5.1 Depth Cameras

Depth cameras are optical devices that measure depth “images”. Each pixel in a

depth image records a depth value that indicates how far away from the camera the

object seen by that pixel is. These devices usually work in the infrared (IR) by active

illumination, making their operation invisible to the human eye. Depth images can

be mapped to position images, where each pixel records a 3D point relative to to the

camera. Position images can be visualized as 3D point clouds.

5.1.1 Kinect 1

The Kinect 1 (Fig. 5.3) is a structured illumination depth camera. The device

projects a known dot pattern on a scene and detects depth by parallax shifts in the

pattern relative to a reference depth. This technique inherently has depth error on

the order of O(d2), where d is the distance from the device [SLK15].

Multiple Kinect 1 depth cameras operating in the same scene will interfere. The

structured illumination pattern from one depth camera will confuse a second depth
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Figure 5.3: Kinect 1 — (a) device (b) depth image (c) position image

Figure 5.4: Structured Illumination Depth Camera Interference
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camera trying to detect parallax in its own pattern. This causes holes to appear in the

depth image where the patterns overlap (Fig. 5.4.a). The problem is severe enough

to stymie utilizing multiple depth cameras without a solution. Time multiplexing the

depth cameras is too slow, and optical choppers introduce unwanted synchronization

and mechanical complexity. A clever and simple solution is to vibrate the depth

cameras [MF12]. The projector and camera for each device are rigidly attached to

each other, so a vibrating depth camera sees virtually no change in its projected

dot pattern. However to an observer the vibration smears out the projected dot

pattern, reducing its brightness. The effect is even greater when the observer is also

vibrating. A weighted motor attached to the chassis of the camera provides the

vibration (Fig. 5.4.b). This technique eliminates most interference.

5.1.2 Kinect 2

Figure 5.5: Kinect 2 — (a) device (b) position image
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The Kinect 2 (Fig. 5.5) is a time of flight depth camera. Similar to radar and

sonar, the device illuminates a scene with pulses of light and detects depth by mea-

suring the travel time of the reflected signal. Time of flight technology has higher

precision and accuracy over structured illumination devices. A pair of Kinect 2 depth

cameras were used on the final experimental system.

Multiple Kinect 2 depth cameras can be operated in the same scene without

special considerations. The sensors could theoretically interfere with each other, but

experimentally this is not observed. Apparently during the extremely short amount

of time a sensor is sensitive to its reflected pulse it is unlikely another device is

illuminating the scene with its own pulse.

5.2 Depth Camera Registration

The depth cameras must be registered with the RF imaging system to inform the

imaging model. This is achieved by applying constellation registration from Ch. 4.

A physical constellation with fiducials distinguishable in depth and RF reflectivity

is required for registration. An experimental multisensor constellation is shown in

Fig. 5.6. The body is made of extruded polystyrene foam for its low RF reflectivity

and mechanical rigidity. Narrow foam stalks with flat ends that are sufficiently point-

like and isolated in depth serve as depth camera fiducials. The stalk ends are covered

in metal foil to serve as RF fiducials coincident with the depth camera fiducials

(this is not required, but convenient). Shiny surfaces interfere with the function of

the depth cameras, so the foil is covered in masking tape to give it a matte finish.

Coincident photogrammetry fiducials are also added so the nominal constellation Cm

can be accurately measured rather than designed. There are at least 3 asymmetric
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fiducials to guarantee a unique constellation registration solution, and these fiducials

are placed as far apart as practical to maximize registration accuracy.

Figure 5.6: Experimental Multisensor Registration Constellation

Depth camera registration proceeds by placing the multisensor constellation in the

imaging volume where its fiducials are simultaneously visible to all imaging devices

being registered (Fig. 5.7). The constellation is imaged with each device. For

each image the fiducial positions are estimated relative to the respective imaging

device. The exact details depend on the imaging device and will be addressed shortly,

but in all cases the result is a measured constellation. A depth camera measures

constellation Dd w.r.t basis d, and is registered with the physical constellation using

the nominal constellation Cm

Adm = Procrustes2(Cm,Dd). (5.1)

Likewise, an RF imaging system measures constellation Dh w.r.t forward model basis
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Figure 5.7: Depth Camera Registration

h, and is also registered with the physical constellation using the nominal constellation

Cm

Ahm = Procrustes2(Cm,Dh). (5.2)

With rigid transformations Adm and Ahm in hand, the camera basis d is registered to

forward model basis h by the composition

Ahd = Ahm ◦ Amd. (5.3)

It is convenient to define a global basis g shared by all imaging devices. In this

case forward model basis h will be registered with global basis g by a specified rigid

transformation Agh. Furthermore, there may be several depth cameras. Therefore

the i-th depth camera basis d is registered to global basis g by the composition

Agd,i = Agh ◦ Ahm ◦ Amd,i . (5.4)
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Figure 5.8: Depth Camera Registration — Experimental registration process of an

early registration target (a) t

This method depends on estimating fiducial positions in 3D RF images and 2D

depth images. The RF images are processed with the same strategy described in Sec.

4.4.1 and illustrated in Fig. 4.7. The 2D depth images are processed in a similar way.

First, fiducials are manually located in a depth image. For each fiducial the local

minimum depth value and its location are found in a small search region surrounding

the manually selected location, and the 3D position values of pixels near the local

minimum depth pixel are averaged to estimate the fiducial position. Care must be

taken to not average invalid depth values.

An attempt to quantify the registration error that could be expected from this

process was conducted. A target of 4 multisensor fiducials distributed in a vertical line

was constructed. This target was imaged with the imaging system and a registered

depth camera 16 times in a 4× 4 2D grid, forming an array of 64 sample points. The

fiducials were isolated in both the RF and depth and their 3D positions estimated

can compared. The RF system is assumed to represent ground truth because there is
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Figure 5.9: Depth Camera Registration Error

no source of spatial distortion in the forward model, unlike a structured illumination

depth camera. Statistics were run on the axis-aligned components of the differences

and the norm of the differences (Fig. 5.9). The maximum position error over a 1m3

centered about 1m in front of the imager is about 4.5cm. This is perfectly acceptable

since even a coarse ROI is effective at reducing imaging times. Note, this data was

taken early in development with a Kinect 1; a Kinect 2 would likely have smaller

positioning error.

5.3 Measuring the ROI

The primary task of the depth cameras is to generate a tightly fitting volumetric

ROI around objects in the RF foreground of an imaging volume. The ROI identifies

which voxels to consider in the forward model. The process of turning registered
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depth images into ROIs takes several steps: depth foreground detection, rasterization,

combination, and resampling. The result is a logical mask flagging voxels in the ROI.

ROIs are used by modified versions of the forward model to select a subset of the

imaging domain.

5.3.1 Depth Foreground Detection

Depth image foreground detection is based on a background subtraction and thresh-

olding strategy (Fig. 5.10).

Figure 5.10: Depth Image Foreground Detection — (a) background (b) scene (c)

foreground (d) subsampled foreground

Prior to depth foreground detection, a depth background is measured for each

depth camera. This is done at the same time the RF background is measured to

make the depth and RF backgrounds correspond to the same scene. The depth

background is averaged over several frames to minimize the effects of noise.

MATLAB code for depth foreground detection is given in Listing 5.1. For a

pixel to be in the foreground, its depth value must be valid (non-zero) and either the

background value must be invalid (so no comparison can be made) or the depth value

must be less than the background value by a specified threshold. The raw foreground

is further processed by a median filter to dissolve small false positives and smooth
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the result. Filtering can result in invalid pixels being marked as foreground, so pixels

must have valid depth values to be identified as in the foreground.

Listing 5.1: Foreground Detection

1 function [fg_mask] = DepthForeground(z, z_bg, dz_threshold, neighborhood)

2 % differentiate background from foreground

3 fg_mask = z & (~z_bg | (z_bg - z) >= dz_threshold);

4 % apply median filter (re-implement as filter and threshold)

5 fg_mask = z & MedFilt2(fg_mask, neighborhood);

6 end

5.3.2 Rasterization

A process using a registered foreground depth image to identify foreground voxels in

an imaging volume is now described (Fig. 5.11). It is assumed the imaging volume

is a rectangular grid of voxels for efficiency, and its registration is known w.r.t. the

depth camera. The result is a logical mask that flags foreground voxels.

First, the depth image is mapped to a position image. Each pixel in the position

image specifies a point rd ∈ R3 w.r.t. depth camera basis d representing the position

of the closest surface detected along the pixel’s line of sight. Importantly, basis d

coincides with the aperture in the pinhole camera model. This means a position

measurement also identifies the line of sight on which it is situated. Along a pixel’s

line of sight, everything between the camera and measured position is transparent,

while everything behind is occluded.

In a security screening application, objects of interest will be concealed underneath

optically-opaque but RF-transparent clothing, so it is important to image voxels
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behind surfaces detected by the depth camera. It is clearly important to model lines

of sight to generate a ROI.

Figure 5.11: ROI Rasterization

A line can be represented by the parametric vector equation

r(t) = r0 + dt (5.5)

where r0 ∈ R3 is a position vector on the line, d ∈ R3 − {0} is a direction vector

pointing along the line, and t ∈ R is the parameter. Consider a pixel’s line of sight

by setting r0 the measured position rd and setting d to the unit vector r̂d = rd/ ‖rd‖

r(t) = rd + r̂dt. (5.6)

Making d a unit vector allows the parameter t to be specified in length units (i.e.

meters). Evaluating the line at t = 0 returns the measured position rd, while t < 0

corresponds to the line before the surface and t > 0 to the line behind the surface.
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A ROI along a line of sight relative to the measured surface position is specified

by the parameter interval t ∈ [ta, tb]. This interval corresponds to the line segment

with endpoints r(ta) and r(tb). Generally ta is chosen to be slightly before the surface,

and tb is chosen to penetrate the surface far enough to capture hidden objects and

skin, but not much deeper since RF signals attenuate rapidly in human skin. Typical

values are ta = −0.02m and tb = 0.08m.

The ROI line segment end points are transformed to the forward model basis h

with Ahd. The transformed position components are then mapped to grid indices

with the function (as applied to the x component)

ix =

⌊
x− x0

∆x

⌋
(5.7)

where x0 is the minimum grid value, ∆x is the pitch of the grid, and ix is the resulting

index. The result is index vectors ia and ib.

Finally, the ROI line segment is drawn into the 3D imaging volume with a 3D

line segment rasterization algorithm. A line algorithm is used instead of volumetric

algorithms for simplicity and speed. There are many line segment rasterization algo-

rithms. A conceptually simple algorithm is to iterate over a parametric line equation

constructed from the two end points. The dimension with the largest difference be-

tween the line segment end points is iterated over to ensure the line is unbroken and

one voxel thick. To simplify coding, the end points are potentially swapped to ensure

the iteration dimension indices increase. A line is constructed by taking ia as the

reference position, and defining the direction vector q as

q =


ib−ia

∆imax
if ∆imax 6= 0

0 if ∆imax = 0

(5.8)

144



where ∆imax is the difference between the starting and ending index along the it-

eration dimension. The line is evaluated and rounded at indices along the iteration

dimension to generate the voxel indices of the line segment

ik = round(ia + qk) for k ∈ [0,∆imax]. (5.9)

Voxel indices that are within the bounds of the imaging volume are flagged as ROI

voxels. If a voxel falls outside the imaging volume, a flag is set to note this condition.

The process of rasterizing ROI line segments is repeated for all foreground pixels

in a position image. This fills out a volumetric ROI using line segments.

Figure 5.12: Line Rasterization Spread – (a) lines fail to fill out a volume (b) proper

sampling

There are some downsides to the presented rasterization strategy. The most se-

rious is that there is potentially a great deal of redundant calculation if lines are

relatively closely spaced. This can be mitigated by rasterizing only a subset of fore-

ground pixels. It should also be noted that if the ROI lines are very long, or if the

imaging volume voxels are extremely fine, the lines will fail to fill out a volume (Fig.

5.12). However these situations are not encountered in the experimental system, as

will be discussed.
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5.3.3 Combining ROIs

Up until this point only a single depth camera has been considered when generating

the ROI. Occlusion prevents any single camera from fully identifying the foreground of

complicated scenes. Multiple depth cameras can be used to improve scene coverage.

Each depth camera can provide a ROI for a given imaging volume. How best to

combine these ROIs into a more complete ROI depends on the situation.

Figure 5.13: ROI Combination — (a) intersection (b) union

The ROI concept as applied to the imaging system relies on the observation that

the forward model only needs to include voxels in the RF foreground. This seems

to indicate all voxels occupied by foreground objects must be part of the ROI. The

best way to isolate a volume occupied by an object is to surround the object with

depth cameras, use long ROI line segments, and take the intersection of the ROIs by

logically ANDing them (Fig. 5.13.a).

For security screening applications in K band, scenes are expected to be made
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of conductive materials that strongly reflect waves from their surface and attenuate

waves traveling into their interior. The interior of objects are effectively shielded

and play no role in the forward model. Practically speaking the RF foreground

volume is a subset of the actual foreground volume. In this case it is a shell of

voxels around a foreground object on the side of the aperture that are part of the

RF foreground; everything else is shielded by the body of the object. The best way

to isolate a volumetric shell of the surface of an object on the side facing an aperture

is to collocate cameras with the aperture, use short ROI line segments, and take the

union of the ROIs by logically ORing them (Fig. 5.13.b).

5.3.4 Resampling

It has been assumed that the imaging volume and ROI share the same grid. This is

not a requirement, and it can be convenient to use a courser grid for the ROI than

for the RF image. This is because the ROI does not need to be highly accurate to

be highly effective, and in a real-time application this can be leveraged to adjust the

time it takes to compute the ROI.

Assuming the imaging volume and ROI volume coincide but differ in voxel pitch,

the ROI volume can be mapped to imaging volume with a windowing transformation

(App. B). This kind of transformation maps intervals onto other intervals. Concep-

tually the transformation translates the minimum value of one interval to the origin,

scales the size of interval to the size of the desired interval, and then translates the

origin to the minimum value of the second interval. When applied to voxel indices, it

is important to think of indices as being in the center of voxels to derive the correct

transformation. The equation for mapping ROI indices to (continuous) image indices
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is

ix,img =

[
ix,roi +

1

2

]
Nx,img

Nx,roi

− 1

2
. (5.10)

Counter-intuitively, it is actually the (rounded) inverse of this transformation that is

needed

ix,roi = round

([
ix,img +

1

2

]
Nx,roi

Nx,img

− 1

2

)
. (5.11)

The inverse is used to ensure every image voxel is mapped to a ROI voxel. The

image volume indices are mapped to ROI indices, and the ROI is effectively sampled

by nearest neighbors by rounding.

5.4 Applying the ROI

With a ROI in hand, all that is left to do is reduce the imaging forward model. This

process was described for the H matrix in the introduction of this chapter; voxels

outside the ROI are pruned from the forward model by eliminating the corresponding

components from f and columns from H.

If H is factored for practical reasons, applying the ROI to reduce the forward

model necessarily becomes more complicated. APB factorization is an example of

this. Fortunately applying a ROI to APB requires very little modification to the

basic implementation. The ROI is used to select subdomains to reconstruct. The

APB formulation tracks subdomains throughout it’s operators, so the ROI is simply

used to select the subdomain indices as they are processed.

The ROI reduces the size of the forward model to a size where real-time image

reconstruction becomes feasible. This is supported by back-of-the-envelope numbers.

The experimental imager typically models a screening volume of 1 × 2 × 2m3 par-

148



titioned into 1 × 1 × 1cm3 voxels, resulting in Nv = 4 × 106 voxels. People have

roughly 2m2 of skin, and half will be visible to the imager corresponding to about

1 × 104 voxels. The volumetric ROI will multiply the number of voxels by roughly

a factor of 10. Thus, a person occupies about N = 1 × 105 voxels. The imager

was designed with Ntx = 24 Tx, Nrx = 72 Rx, and Nf = 100 frequency points

to give M = 172800 ≈ 2 × 105 measurements. Thus a typical H matrix is about

M ∗ Nv = 8 × 1011 elements, and the ROI reduces that to about 2 × 1010 elements

or 5% of the original size. An application of a complex matrix will take 4 ∗M ∗ N

multiplications, and 4 ∗M ∗ N additions, so about 8 ∗M ∗ N FLOPs total. This

means it takes roughly 16 × 1010 FLOPs, or 160 GFLOPs, to apply the reduced

forward model. State-of-the-art GPUs have theoretical throughput on the order of 1

TFLOPs/s, putting real-time image reconstruction in reach. In addition, the reduced

problem size helps fit the problem into memory.

Figure 5.14: ROI Application — (a) color + surface (b) ROI (c) reconstructed

image

A standard experimental example the ROI being applied is shown in Fig. 5.14.
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Table 5.2: Reconstruction Times

Method cELC Demo Demo A Demo B

MF 3− 5min (GPU) ≈ 10s ≈ 6s

GMRES 2.5− 3.0min 2.5− 3.0min

FAMI 250ms (4 GPUs)

The ROI is clearly larger than the RF image, indicating that the image is not an

artifact of the ROI. Image reconstruction times for various system revisions are given

in Table 5.2. This 2 order of magnitude speedup in matched filter reconstruction

times from the cELC demo to Demo A was enabled partially by the ROI.
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Chapter 6

Stitching

Images produced by the imaging system must be screened for threats with automatic

threat detection (ATD). There are two major factors that complicate image analysis.

First, in K band many objects of interest are smooth on the scale of the wavelength

and made out of materials that are highly conductive and consequently reflect like a

mirror. This specular reflection becomes a problem for active illumination systems

when illuminating waves are reflected away from the aperture, effectively limiting

the visibility of objects to specular highlights that depend on the orientation of the

object’s surface relative to the probing antennas (Fig. 6.1). Second, the scene deforms

over time. This is a unique property of the imaging system that greatly complicates

understanding information contained in a set of images.

It is unclear what the best way to do ATD is for a walk-while-scan imager. This

chapter explores stitching as a solution to the specularity and deformation problems.

The observation can be made that the motion of a person through a screen-while-

walk imager supplies many views of the person with different coverage. Intuitively,

these images can be stitched together to produce a single image with better coverage,

which may be easier to process with existing ATD. While the idea is simple, it is not

clear how to combine multiple images of a deformable body into a single image in

real-time. A model for stitching people in motion is systematically developed through

experiment and simulation . Conceptually the technique can be applied to other 3D

imagers.
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Figure 6.1: Raw Image

The primary benefit of image stitching is the potential to use existing ATD models

trained for conventional stop-and-pose systems.

This chapter is divided into 3 sections. The first section covers image stitching

fundamentals that are common to most stitching tasks. The second second then

uses the rigid registration theory developed in Ch. 4 to implement a series of rigid

stitching experiments. Notably, a rotation stitch produces images similar to commer-

cial cylindrical SAR systems. The third section generalizes rigid stitching to build a

stitching modeling based on a skeleton armature. The chapter culminates in a de-

formable stitching model suitable for the unique image sets produced by the imaging

system.
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6.1 Fundamentals

Image stitching seeks to combine multiple images of the same scene into a single

composite image called a stitch. In general, stitching can be divided into three tasks:

registration, calibration, and blending [BL07]. First, registration aligns images by

modeling the geometric transformation relating images, establishing correspondences

between images, and then estimating the transformation parameters between those

correspondences. Next, calibration equalizes images to compensate for variations in

the imaging process, making overlapping registered images locally similar. Finally,

registered and calibrated images are blended to compute the resulting stitch by com-

positing. This section discusses how these tasks apply to millimeter wave images of

people in motion, where specularity-limited coverage and deformation complicate the

stitching process. The section concludes by outlining a basic stitching algorithm for

rigid bodies.

6.1.1 Registration

Registration is perhaps the most involved stitching task, and the focus of this work.

Humans are visually gifted by nature, and easily align overlapping images of a scene.

However, distilling what we do into an algorithm is surprisingly difficult. The litera-

ture is briefly reviewed for inspiration.

A popular stitching problem is to combine multiple photographs into a panoramic

stitch [MP94]. Due to user measurement patterns and camera image distortion, the

geometric transformation between photos is usually parameterized by cylindrical or

spherical projections [SSSS97]. Photo registration generally proceeds by correlation

[Bro92], neural network inference [AED+16], or local feature analysis to detect corre-
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spondences and estimate the geometric transformation parameters between photos.

Local feature analysis in particular efficiently finds, describes, and matches localized

image features deemed ”interesting”. Feature algorithms such as SIFT [Low99] and

SURF [BTVG06] coupled with bundle adjustment [TMHF99] or stochastic search

algorithms like RANSAC [FB87] are effective at solving the photo registration prob-

lem. However, while local feature analysis seamlessly extends to 3D images [SAS07],

it is unclear if millimeter wave images characterized by specularity-limited coverage

of mirror-like surfaces have sufficiently distinguishable features. Moreover, photo

registration gives little insight into modeling a deformable scene.

Medical imaging is deeply concerned with the registration of deformable scenes.

For instance, radiotherapy planning may use computational anatomy to accurately

register anatomical structures against templates to safely predict and administer

dosage [MA13]. However, sophisticated medical image analysis tends to be compu-

tationally prohibitive for real-time applications. A balance must be struck between

accuracy and computational complexity.

To develop a registration model suitable for real-time millimeter wave imaging of

people in motion, the first step is to investigate the subproblem of registering images

of rigid body scenes that don’t deform. With the language of rigid transformations

described in Ch. 4 a registration model for rigid scenes can be developed (Fig. 6.2).

The geometric transformation parameters, or pose, of a rigid scene is fully described

by a rigid transformation with respect to some basis. The goal is to take a set of

images of a rigid scene in different poses relative to global basis g and align them

relative to stitch basis s. Suppose basis b is attached to the rigid scene and the pose

Agb can be measured for each image. Furthermore suppose a constant rest pose Abs
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Figure 6.2: Rigid Registration Model — A rigid scene is imaged relative to global

basis g (left). Images are aligned relative to stitch basis s (right). Suppose basis b is

attached to the scene. Pose Agb is experimentally measured each image. Rest pose

Abs is a constant defined to locate the stitch relative to basis s. Pose Ags = Agb ◦Abs

then relates stitch points rs to global points rg.

is defined to locate the scene relative to basis s. Then pose

Ags = Agb ◦ Abs (6.1)

relates stitch points rs to global points rg. Thus for rigid scene registration the main

task is to measure pose Agb.

Sec. 6.2 experimentally applies the rigid registration model using constellation

registration (Ch. 4) to register rigid scenes undergoing translational and rotational

motion. Sec. 6.3 extends the rigid registration model to deformable scenes by incor-

porating a pose skeleton, which is used to approximate the deformation of a scene

using a small number of rigid transformations.
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6.1.2 Calibration

Calibration makes overlapping registered images locally similar by correcting for vari-

ations in the imaging process. For photographic stitching, the primary concern is

limited dynamic range, in which the dynamic range of a panorama exceeds the dy-

namic range of the camera, such as when stitching photos of bright sky and dark

ground. Tone mapping is typically used to stitch these types of high dynamic range

panoramas.

For millimeter wave images, the interpretation of signal magnitude between dif-

ferent images is more difficult to ascertain, which affects blending. The magnitude

of the reconstructed images depends in a complicated way on scene configuration,

dynamic range, signal-to-noise ratio (SNR), prior information, and regularized re-

construction algorithms. The magnitude of each image is effectively determined up

to a different unknown scaling factor.

Experimental experience indicates that similar scenes have similar normalized

magnitudes. Satisfactory preliminary stitching results have been obtained without

extensive calibration. However, calibration must be done to properly blend dissimilar

images for high quality ATD input. This remains an open avenue of research.

6.1.3 Blending

The last stitching task is to blend registered and calibrated images by compositing

to produce the final stitch. For every stitch voxel, the associated stitch point rs is

transformed to global point rg, the source images are sampled using interpolation, the

sampled data is combined by some blending operation, and the result is accumulated

as stitch voxel data.
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Figure 6.3: Blending — Stitched data from a rotation experiment is blended in two

ways. Magnitude summation blending (left) is sensitive to noise and exposure time,

while maximum magnitude blending (right) is not.
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There is no one correct blending operation, and a variety of choices exist to

varying effect (Figure 6.3). A plausible rule is to add the sampled image magnitudes

together. This works but produces a stitch that is sensitive to exposure time and

low-level noise. For data sets of unknown size, such as streaming data, a better rule is

to assign the maximum magnitude of the sampled images, which mitigates the issues

with addition. All stitching results use the maximum value blending strategy unless

otherwise noted.

6.1.4 Algorithm

To stitch an image set, the following algorithm is used. Given input image set Σ,

image reconstruction points rg ∈ R3 with respect to the global basis g, stitch points

rs ∈ R3 with respect to stitch basis s, and rest pose Abs, we wish to output a stitch.

First initialize the stitch to zero. For each image, solve the registration problem to

estimate pose Agb. Then transform rs with Eq. 6.1 to obtain query points r′g. Next,

sample the image at the query points using interpolation to obtain registered image

data. Finally, blend registered data with the current stitch to update the stitch. This

algorithm is suited for image set Σ of unknown size.

6.2 Rigid Stitching

Due to the complexity of stitching millimeter wave images of a person in motion, first

the rigid registration model (Eq. 6.1) developed in Sec. 6.1 is applied to perform

rigid body stitching. Conceptually, a rigid scene and rigid imager move relative to

each other along different trajectories while an image set is measured. In this section
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Algorithm 7: Stitching

Input: Σ, rg ⊂ R3, rs ⊂ R3, Abs ∈ SE(3)

Output: stitch

stitch = 0

for image ∈ Σ do

Agb = register(image)

r′g = Agb ◦ Abs(rs)

data = interpolate(image, rg, r′g)

stitch = blend(stitch, data)

end

two rigid-body experiments are discussed. The first experiment models a person

being conveyed past an imaging system by using a mannequin on a 2D translation

stage. The second experiment models a common SAR scanning configuration used

in airport security by using a mannequin on a rotation stage.

The key task of rigid registration is to measure rigid scene pose Agb with respect to

the global imager basis g. The controlled experiments in this section photogrammetry

with constellation registration (Fig. 6.4). A Creaform MaxSHOT 3D camera is

used to measure the location of point-like reflective sticker fiducials relative to a

photogrammetry prop basis p to produce a point cloud accurate to within imager

tolerances [OIL+16] [Cre14]. Three or more fiducials are patterned in an asymmetric

constellation on an object to unambiguously encode the scene pose. To isolate the

constellation in the presence of other points, a special numbered fiducial is placed

at the center of the constellation to group points by radius. The first time the

constellation Dp is measured with respect to basis p, the points are used to construct
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Figure 6.4: Photogrammetry Registration — Constellation Ct is designed relative

to template basis t. A physical constellation is affixed to a rigid body and measured

relative to photogrammetry basis p. Constellation registration is applied to estimate

pose Apt.

a template basis t into which they are transformed and recorded as constellation

Ct in a template file. Subsequent measurements of constellation Dp are compared

against the template file using OPA to determine pose Apt from template basis t to

photogrammetry basis p

Apt = Procrustes2(Ct,Dp). (6.2)

The pose for every antenna is determined in a similar manner as covered in Ch. 4.

Choosing a particular antenna to serve as the global basis g, the pose Apg is defined.

Using the photogrammetry prop as an intermediate basis, the pose Agt is computed

as

Agt = Agp ◦ Apt. (6.3)

If the constellation is affixed to a stage, basis t can be relabeled as scene basis b to

measure pose Agb, registering the stage with the global basis.

There is nothing special about photogrammetry, and in general any sensor system
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Figure 6.5: Translation Registration — A linear stage affixed with basis b is trans-

lated relative to global imager basis g. Terminal stage configurations x(0) and x(1) and

associated poses A
(0)
gb and A

(1)
gb are measured, and linearly interpolated with parameter

α to compute x(α) and A
(α)
gb .

capable of imaging points in R3 may be used to experimentally measure poses.

6.2.1 Translation stitching

In this experiment, a mannequin is placed on a 2D translation stage. The stage can

be programmed with a sequence of stage parameter vectors x ∈ R2 to follow any

trajectory in a plane. To simplify the discussion attention is restricted to linear tra-

jectories modeling a person being conveyed past an imaging system. The experiment

proceeds by stepping a mannequin along a linear trajectory and collecting image data

at each step.

The stage is equipped with a photogrammetry constellation so pose Agb can be

experimentally registered by Eq. 6.3. This is a time consuming process, so poses are

measured for a small number of stage configurations and extrapolated to arbitrary

poses from those measurements.
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A linear trajectory can be constructed by linearly interpolating a pair of stage pa-

rameter vectors and their corresponding poses (Figure 6.5). The linear interpolation,

or lerp, of two properties p0 and p1 by parameter α ∈ R is defined as

lerp(p0, p1, α) ≡ p0 + (p1 − p0)α. (6.4)

Given stage parameter vectors x(0) and x(1) with associated measured poses A
(0)
gb and

A
(1)
gb and interpolation parameters α = 0 and α = 1, compute x(α) and A

(α)
gb for any

α as

x(α) = lerp(x(0),x(1), α) (6.5)

A
(α)
gb = lerp(A

(0)
gb , A

(1)
gb , α). (6.6)

For a linear trajectory with 2 ≤ N ∈ Z points and equal-sized steps starting at A
(0)
gb

and ending at A
(1)
gb , let α = (n− 1)/(N − 1) where n ∈ [1, N ] ⊂ Z.

With image registration solved, the stitching algorithm is applied. Experimental

image data and a stitch of a mannequin undergoing a linear translation trajectory past

an imaging system are shown in Figure 6.6. It is clear that individual images suffer

from specularity-limited coverage, while the stitch improves coverage on the side of

the mannequin closest to the imager. This experiment indicates that a flat imaging

system from a single perspective will be limited by specularity even when images are

stitched, which suggests that different antenna configurations and trajectories should

be considered.

6.2.2 Rotation stitching

A more interesting rigid body scene trajectory is pure rotational motion. Rotation

mitigates specularity-limited scene coverage by viewing a scene from all sides. Imag-

ing a rotating scene with a fixed aperture is equivalent to imaging a fixed scene with
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Figure 6.6: Experimental Translation Stitching — A single image (left) is compared

against the stitch (right). Note the gains in coverage on the limbs.
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Figure 6.7: Rotation Registration — A rotation stage affixed with basis b is rotated

relative to global basis g. For stage configurations x(0) and x(φ) associated poses A
(0)
gb

and A
(φ)
gb are measured. From these poses the stage axis n̂ and a point on that axis

p are deduced, and pose A
(θ)
gb for any stage configuration x(θ) is computed.

an aperture counter-rotating around the scene. This mimics a common configuration

found in commercial mechanically scanned SAR systems, permitting a fair compari-

son between imagers to be made. However, it should be noted that SAR coherently

reconstructs a single image based on all collected measurements, while a real-time

imager coherently reconstructs a sequence of images that are incoherently stitched

into a single image.

In this experiment, a mannequin is placed on a rotation stage. The stage can be

programmed with a sequence of stage configuration angles x(θ) = θ ∈ [0, 2π) ⊂ R to

follow any rotational trajectory. The experiment proceeds by stepping a mannequin

along a rotation trajectory and collecting image data at each step.

Once again photogrammetry is used to experimentally register scene pose Agb for

a small number of stage configurations to compute arbitrary poses (Figure 6.7). A

rotation is fully described by axis direction n̂ ∈ S2, axis point p ∈ R3, and angle θ.
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n̂ and p are constant for any stage pose, so these can be estimated to construct new

poses. Given stage configuration angles x(0) = 0 and x(φ) = φ 6= 0 with associated

measured poses A
(0)
gb and A

(φ)
gb , compute pose A

(φ)
gg which encodes a rotation of φ

about the stage axis relative to global basis g

A(φ)
gg = A

(φ)
gb ◦ A

(0)
bg . (6.7)

To understand this equation consider scene basis b as fixed while basis g is trans-

formed, and recognize this is equivalent to transforming points relative to fixed basis

g. The rotation matrix R
(φ)
gg can be extracted from A

(φ)
gg and convert it to axis-angle

representation [Ebe02] to isolate axis direction n̂. However, the translation vector

t
(φ)
gg is not necessarily an axis point p. This is because R

(φ)
gg represents a rotation

about the global origin and not the stage axis. To compute axis point p, observe p

must be unchanged by pose A
(φ)
gg

p = A(φ)
gg (p) = R(φ)

gg p + t(φ)
gg . (6.8)

An axis is a line in 3D, so an infinite number of points satisfy this equation. To

guarantee a unique solution solve for p in the 2D planar subspace perpendicular to

axis direction n̂. The projection of t
(φ)
gg on this subspace is

t(φ)′
gg = t(φ)

gg − (t(φ)
gg · n̂)n̂. (6.9)

Recasting (6.8) in 2D (denoted by primes), solve for p′

p′ = (I′ −R(φ)′
gg )−1t(φ)′

gg (6.10)

where I′ is the identity matrix. Expanding p′ relative to the 3D global basis g

yields axis point p. The scene pose A
(θ)
gb can now be constructed for arbitrary stage
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Figure 6.8: Experimental Rotation Stitch — A stitch of a mannequin wearing a

backpack containing a pressure cooker is shown from three perspectives. Compare

to raw image Fig. 6.1. Coverage is excellent, except for the top of the torso due to

specularity. Images are comparable to SAR systems.

configuration angle x(θ) = θ. First construct pose A
(θ)
gg by moving the scene axis to

the global origin by subtracting p, then rotate about axis direction n̂ by angle θ, and

finally restore the axis to its original position by adding p

A(θ)
gg (rg) = R(n̂, θ)(rg − p) + p. (6.11)

Functional composition with A
(0)
gb yields the desired pose

A
(θ)
gb = A(θ)

gg ◦ A
(0)
gb . (6.12)

For a rotation trajectory with 1 ≤ N ∈ Z points and equal-angle steps starting at

A
(0)
gb , let x(θ) = θ = 2π(n− 1)/N where n ∈ [1, N ] ⊂ Z.

With registration solved, the stitching algorithm is applied. Experimental image

data and a stitch of a mannequin undergoing a full rotation trajectory in front of an
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imaging system are shown in Figure 6.1 and Figure 6.8. The stitch exhibits excellent

scene coverage comparable to SAR systems [SMC+96] limited only by occlusion and

specular surfaces significantly aligned with the axis. This results emphasizes the

benefits of tightly controlling the imaging environment and imaging a scene from

multiple perspectives. Unfortunately most of that control must be given up to stitch

people in motion.

6.3 Skeleton stitching

The primary difficulty with stitching people in motion is that the scene is not a

rigid body, but instead one that deforms, dramatically complicating the registration

process. A single rigid transformation is no longer sufficient to fully characterize the

scene pose. In this section the scene is segmented into a set of parts whose poses can

be locally approximated by rigid transformations and combined with a deformation

model.

It is impractical for security applications to affix photogrammetry constellations

to people being imaged, therefore a different approach from Sec. 6.2 is needed to

measure the pose of people. A serendipitous solution to this problem is to repurpose

the depth cameras used to constrain the inverse imaging problem with a ROI (Ch.

5). The imager incorporates Kinect depth cameras which were originally designed

as interfaces for video game systems and can fit skeleton armatures to people to

approximate their pose.

The Kinect skeleton is organized as a set of bones, b ∈ B whose individual poses

are described by rigid transformation (Figure 6.9). The Kinect skeleton contains

only about 25 bones, which is clearly not anatomically correct, reflecting the Kinect’s
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Figure 6.9: Skeleton Registration — A Kinect skeleton models a person’s pose with

a set of bones b ∈ B and associated rigid transformations. The skeleton can take on

any rest pose Abs relative to stitch basis s (left). For each image, the skeleton pose

Agb is measured relative to global basis g (right).

intended usage as an entertainment device rather than a precision instrument. Thus,

the Kinect skeleton is only a first order approximation of the scene pose. Regardless, it

is a strong prior that can bootstrap more sophisticated registration in future research.

Poses measured relative to depth camera basis c must be mapped to global basis g to

perform stitching, so depth camera pose Agc must first be measured by registration.

This is addressed in Ch. 5.

With the depth cameras registered, depth and skeleton information are trans-

formed into the global basis g to inform imaging and stitching. The skeleton by

itself is not immediately useful for stitching.First the skeleton must be associated

with a geometric ”skin”. Here a simple model is experimentally demonstrated that

segments the scene into rigid subvolumes attached to bones. This is generalized to

a model that accounts for deformation by using techniques from computer graphics,

and simulated results using this advanced stitching model are presented.
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Figure 6.10: Rigid Subvolume — For each bone b ∈ B, a rigid pill characterized

by radius ρb and length lb is defined (top left). A grid relative to stitch basis s is

partitioned by the rest pose subvolumes (top right). Transformed subvolumes overlap

(red) when adjacent bones are not colinear (bottom).

6.3.1 Rigid Subvolume Stitching

A simple way to associate a skeleton with its surrounding volume is to define a

rigid subvolume attached to each bone (Figure 6.10). An obvious candidate is an

axis-aligned cylinder of some predetermined radius ρb and length lb. Points are easily

tested to be within this cylinder by checking if their projection on the axis falls within

the interval of the bone and if their distance from the axis is less than the radius.

While a cylinder is a good subvolume for a single bone, cylinders do not smoothly

connect at skeletal joints. A remedy is to cap the cylinder with spheres to create

a pill-shaped subvolume. In this way, joints are much better represented. However,

using a pill causes significant subvolume overlap around joints, double counting a

large number of points. To mitigate this issue, the spherical cap belonging to the

non-basis end of a bone is made to exclude points, resulting in a ”dented” pill. When

these subvolumes are mapped to a skeleton the overlap at joints is reduced.
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Figure 6.11: Experimental Rigid Subvolume Stitch — In no single image are the

letters all visible (left); note the camera overlay. The the word ”DUKE” is clearly

read in the stitch (right). Note the crude stitching around joints caused by the

simplistic registration model, particularly around the hips and thighs.

Before stitching a person in motion, an arbitrary skeleton must be selected to serve

as the rest pose which defines the pose of the stitched image (Fig. 6.9). Conveniently,

any experimental skeleton suffices, although rest poses with limbs spread apart are

likely best suited for ATD. A grid of points is then defined relative to the stitch basis

s. For each bone b ∈ B with associated rest pose Abs, a list of grid points rs,i ∈ R3

within the bone subvolume is tabulated, where the index i ∈ I(b) ⊂ Z enumerates

points belonging to bone b. To stitch image data of a person in motion, skeleton data

is measured for each frame to obtain the measured bone poses Agb with respect to

global basis g. For every bone b ∈ B, the associated list of grid points are transformed

by

rg,i = Agb ◦ Abs(rs,i); i ∈ I(b) (6.13)

solving the registration task. The stitching algorithm can then be applied.
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Experimental demonstration of rigid subvolume stitching is presented in Figure

6.11. Here the author was imaged with a set of metal letters spelling ”DUKE” across

his chest and hidden under a vest. The subject faced the imager with their feet

planted, and rotated their torso over their full range for 60 frames. In no single

image are all 4 letters visible, however when stitched the full word is seen, lending

credibility to the skeleton technique. However, it is clear that the Kinect skeleton is

crude, the bone subvolumes are overly simplistic, and overlap between subvolumes

is problematic. A more sophisticated deformation registration model is needed to

realistically stitch people in motion.

6.3.2 SKD+SSD Stitching

Accurately modeling the deformation of a solid is computationally demanding. Ap-

proximations must be made for real-time imaging systems. A simple deformation

model used to great effect in computer graphics is a combination of Shape Key

Deformation (SKD) and Skeleton Space Deformation (SSD) [LCF00] (Figure 6.12).

This model utilizes a skeleton conceptually compatible with the Kinect skeleton. SSD

naturally extends rigid subvolume registration to account for realistic deformation.

However, extreme deformations with SSD can cause unnatural results. SKD solves

this issue by first modifying the underlying geometry as a function of skeleton pose

before SSD is applied. While neither model is physically motivated, with enough

effort, arbitrarily realistic deformations are possible.

SKD interpolates different shape keys with the same vertex topology to produce

new shapes. Each shape key k ∈ K defines a list of vertices rk,i labeled with index i ∈

I. Stitch vertices rs,i are computed by taking the weighted average of corresponding
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Figure 6.12: SKD+SSD — [a] SSD defines rest geometry and assigns weights wSSDb,i

for each bone and point (top). Deformation is achieved by rigidly transforming points

with each bone and taking a weighed average (bottom). Shapes collapse for extreme

poses. [b] SKD interpolates shape keys k ∈ K with the same topology by weighted

average of points with shape weights wSKDk (top). Weighting can driven by a function,

e.g. α (bottom). [c] SKD computes rest geometry to address SSD collapse (top). Pose

variables, e.g. angle θ between bones, can be mapped to SKD weights (bottom).
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shape key vertices over all keys

rs,i =
∑
k∈K

wSKDk rk,i;
∑
k∈K

wSKDk = 1 (6.14)

where wSKDk are the shape key weights. The weights can be made to be a function

of the skeleton pose. At one extreme, for every pose a different shape key could

be defined, which would essentially model deformation by lookup table. However

this would take a prohibitive amount of memory. Instead, additional shape keys are

defined only when memory-efficient SSD results in problematic deformations.

SSD transforms geometry as a function of skeleton pose which effectively reduces

the number of degrees of freedom needed to describe deformation. SSD is a modifi-

cation of rigid registration Eq. 6.1. For every vertex rs,i with respect to stitch basis

s, the associated vertex rg,i with respect to global basis g is computed by taking the

weighted average of rigid transformations over all bones

rg,i =
∑
b∈B

wSSDb,i Agb ◦ Abs(rs,i);
∑
b∈B

wSSDb,i = 1 (6.15)

where wSSDb,i are the deformation weights for each bone b ∈ B and vertex index i ∈ I.

SSD strikes a good balance between computational complexity and realism. However,

geometry influenced by a bone that is twisted or bent to an extreme degree relative

to other bones causes pinching and collapsing of the resulting deformation. SKD

is therefore applied before SSD to supply geometry suitable for deformation by the

given skeleton pose.

While the governing equations of the SKD+SSD model are extremely simple, gen-

erating high quality data to feed the model is not a trivial task. The open source

animation software Blender is used to facilitate this process. Blender is used to pre-

pare a representation of a person by modeling surface geometry, defining a skeleton,
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Figure 6.13: SKD+SSD Puppet — A life-like human model is posed with a skeleton

and deformed with SKD+SSD. Note the threat object on the hip.

and weighting the geometry to the skeleton. Taken together, this data is called a

puppet (Fig. 6.13). The puppet geometry can be realistically deformed by specifying

a skeleton pose. The skeleton pose can be animated with Blender in simulation, or

experimentally measured with depth cameras. For this pioneering work, research is

restricted to simulations where the skeleton pose can be perfectly known.

Puppet and animation data are exported from Blender and imported into the

imaging software. Imported geometric data is composed of vertices and triangular

faces. Vertices are used to model point scatterers in simulation. Faces are supposed to

represent surfaces, however if face vertices are farther apart than half the wavelength

of the probing radiation, the face must be subdivided to correctly model a surface.

In addition, the faces form a orientable surface. To stitch the volume immediately

surrounding the body where worn objects are found, points are added to the geometry

at each vertex along the average normal of adjacent faces in a ”cactusing” procedure

(Figure 6.14).
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Figure 6.14: Cactusing — Geometry produced by computer graphics modeling

software is usually an orientable surface composed of faces with normals n̂f ∈ S2

(left). To detect ”worn” features above the surface, points are added along vertex

normals n̂v ∈ S2 computed from face normals (center). The distribution of points is

defined by a 1D point profile rn,i (right).

A stitching simulation proceeds by selecting a frame of animation, assigning the

corresponding skeleton pose to the puppet, transforming the puppet geometry to

global basis g, and then applying the forward model. The inverse problem is then

solved to reconstruct an image. To stitch, the skeleton pose can be reused to solve

the registration problem. The stitching algorithm can then be applied. Stitch data

can either be accumulated per vertex, or mapped to a regular grid relative to stitch

basis s.

A simulated SKD+SSD stitch of a male puppet walking past an imager configured

like the experimental system is shown in Figure 6.15. The puppet is equipped with

a gun on his right thigh. When compared to the rigid subvolume stitch, the quality

of the SKD+SSD stitch is much better: overlap is eliminated; joints are realistically

deformed and stitched; the improved skeleton more accurately represents the pose

of the scene; and the improved geometry better matches the human body. Whereas
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Figure 6.15: Simulated SKD+SSD Stitch — A male puppet wearing a threat object

was animated walking past a simulated copy of the experimental imager. Speculari-

ty-limited coverage critically restricts the number of frames the threat is visible (left).

Stitching with the same puppet greatly improves coverage, making the threat easily

visible in a standardized pose (right).
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ATD could miss the threat object in any single image, it is plausible that ATD would

easily identify the threat on the person’s thigh in the stitched image.

With perfect knowledge of the skeleton pose, this kind of simulation represents

the gold standard for SKD+SSD stitching. The problem of experimentally estimating

human pose has been extensively studied in the computer vision literature [HTTM12],

but is still an active area of research. Combining the SKD+SSD deformation model

with available experimental skeleton pose estimation is the next step in research.

With the introduction of SKD+SSD deformation and its incorporation into a full

imaging system simulation suite, a host of future research questions can be answered

without the need to construct physical experiments. For instance, the layout of the

imager and trajectory a person takes through the imaging volume must be optimized

to maximize coverage while minimizing system costs. Hallways, U-turns, dog-legs,

and arches are all being considered, and can be rapidly evaluated on a computer.

In addition, a calibration solution must be developed so images can be properly

combined. It is hypothesized that a calibration object present in every image could

be used to normalize the magnitude of the images. With good coverage of the scene

established, a process that matches a person to a puppet from a library must be

developed to stitch a wide variety of body shapes. The most challenging unsolved

task is to estimate the skeleton pose of a real person in the scene which is beyond

the limitations of the Kinect skeleton functionality utilized in experiment.
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Chapter 7

Conclusion

7.1 Summary

This work discussed the design and implementation of an experimental walk-while-

scan microwave imaging system. Ch. 1 motivated microwave imaging for security

screening applications, and introduced a high-level description of the RF structured

illumination imaging system. Ch. 2 developed the measurement model in detail. Ch.

3 derived the algorithms used to efficiently invert the measurement model. When

combined, the measurement model and reconstruction algorithm define the imaging

model. Ch. 4 describes the mathematics of registration, and develops the critical

imager task of antenna registration. Ch. 5 describes how to integrate depth cameras

into the experimental system. These depth cameras are used for several purposed, but

their primary purpose is to reduce the size of the imaging model by providing prior

information identifying the location of objects in the foreground. Ch. 6 describes a

series of stitching experiments as a first attempt at image analysis. A deformable

skeleton stitching model was proposed and demonstrated in simulation.

This work attempted to summarize the design and operation of the experimental

imaging system. The scope of the project was extremely broad, and this was an

ambitious undertaking. I was unable to met the goals I had set out for myself, but

the story doesn’t end here.
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7.2 Future Research

7.2.1 Layout Analysis

A line of research partially resolved but not reported on was analyzing the optimal

layout of several imaging system apertures. While the flat design of the experimen-

tal imager was an important design goal, it became obvious that there are serious

drawbacks. Namely that only one side of a target is ever visible and that specularity

reduces even that. The flexibility offered by a modular system is perfect for exper-

imenting with different multiple aperture layouts; halls, tunnels, u-bends, dog-legs,

etc.

Some interesting new questions can be asked when considering multiple apertures.

First, it should be determined if two apertures should share the same radio or not.

Diametrically opposed apertures might not seem to benefit from a shared radio,

as the measurement model does not consider transmission measurements. However

there may be opportunities to utilize opposing antennas, such as when a person is

approaching two apertures. Knowing which measurements to take and when in this

situation is a problem I call measurement planning.

7.2.2 Body Geometry and Pose Estimation

Deformation of the scene and specularity in the images complicate ATD, which moti-

vated the deformable skeleton stitching model. However this model was only demon-

strated in simulation. To demonstrate the model in experiment, the two related

problems of body geometry estimation and pose estimation must be solved simulta-

neously. This is a complicated task in machine vision and machine learning. Sig-
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nificant progress on generating realistic body geometries and measuring a person’s

pose in the case of multiple color cameras has been made. I believe that with the

addition of depth cameras and the RF imaging system an iterative approach can be

devised that cyclically estimates a person’s body geometry from an image set and

a pose estimate, and then estimates a person’s pose from the same image set and a

body geometry estimate.

Many exciting applications can be explored if this problem is solved, from taking

suit measurements like a tailor, to gait analysis in physical therapy work.

7.2.3 Automatic Threat Detection

An ATD algorithm was never really developed for the imaging system. A standard

approach for ATD is training machine learning algorithms for anomaly detection

[LHG+18]. After an anomaly is detected, classification can be attempted. Concep-

tually, ATD could be trained on data of people in different poses with and without

threat objects, however direct application of this idea is intractable because the space

of human poses is enormous, so the stitching concept was proposed. In this way ex-

isting ATD algorithms can be applied. However state-of-the-art ATD algorithms are

not generally available.

Generating synthetic training data sets has become an increasingly attractive

option for machine learning tasks. Collecting training data is time consuming and

expensive. However with the ability to generate realistic human bodies from body

geometry and pose estimation, it is straight forward to generate realistic scenes and

images of randomly generated people equipped with randomized objects of interest.

This would greatly facilitate the development of ATD. Training data images can
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even be labeled by rendering images using solid color codes. This could also sidestep

touchy details when working with human data sets.

7.3 Vision

Modular screen-while-walk imaging systems invite a full reevaluation of security

screening. Deployment options are expanded by relaxing assumptions about the

configuration of the aperture and how people interact with the device. For instance,

systems unobtrusively installed at portals and along corridors can opportunistically

image passerbys. At a lower cost point, multiple checkpoints become feasible, which

could cooperatively build models of people in an area. Increased screening through-

put and distributed sensor networks would prevent vulnerable crowds from forming at

checkpoints, and could move the secure area boundary outside critical infrastructure

such as airport terminals.
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Appendix A

Electromagnetism Review

This appendix assembles Maxwell’s equations for electrodynamics from first princi-

ples, reviews advanced electromagnetic theorems, and derives a radiation model. The

theoretical development closely follows Griffiths and Balanis. MENTION PEC, PMC

A.1 Electrostatics

Electrostatics is the physics of source charge distributions that are constant in time.

A.1.1 Coulomb’s Law

Coulomb’s law is the empirical equation for the force F on a point electric charge q

at position r by a source point electric charge q′ at source position r′

F =
1

4πε0

R̂

R2
qq′. (A.1)

Coulomb’s law is linear and thus the forces of source charges obey superposition

F = q

[
1

4πε0

∑
i

R̂i

R2
i

q′i

]
. (A.2)

The bracketed factor is a vector field independent of q. Define the electric field as

F = qE (A.3)

E(r) =
1

4πε0

∑
i

R̂i

R2
i

q′i. (A.4)
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Charges that are small and numerous can be modeled as a continuum. Summation

over point charges becomes integration of charge density over a geometric domain

E(r) =
1

4πε0

∫
R̂

R2
dq′ (A.5)

dq′ = λ(r′)dL′ = σ(r′)dS ′ = ρ(r′)dV ′. (A.6)

In particular, the electric field of a volume charge density over volume V is

E(r) =
1

4πε0

∫
V

R̂

R2
ρ(r′)dV ′. (A.7)

A.1.2 Divergence and Curl

Helmholtz decomposition implies a vector field is specified by its divergence and curl.

Consider the divergence of E for an electric volume density. Apply divergence,

exchange the order of divergence and integration, and apply product rule (3)

∇ · E =
1

4πε0

∫
V

∇ ·
[

R̂

R2
ρ

]
dV ′ =

1

4πε0

∫
V

[
∇ρ · R̂

R2
+ ρ∇ · R̂

R2

]
dV ′. (A.8)

∇ρ(r′) = 0 because ρ is not a function of r. Care must be taken to evaluate the

second term with the identity ∇ · [R̂/R2] = 4πδ(R) (see Vector Calculus Appendix)

∇ · E =
1

4πε0

∫
V

[0 + 4πδ(R)ρ(r′)]dV ′ =
ρ(r)

ε0
. (A.9)

The result is Gauss’s law in differential form

∇ · E =
ρ

ε0
. (A.10)

Integrate this over a volume ∫
V

∇ · EdV =
1

ε0

∫
V

ρdV (A.11)
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define the total enclosed charge as

Q ≡
∫
V

ρ(r)dV (A.12)

and apply the divergence theorem to obtain Gauss’s law in integral form∮
S

E · dS =
Q

ε0
. (A.13)

Compute the curl of E by first considering a single source electric point charge at

r′ = 0 and form a line integral in spherical coordinates∫
L

E ·dL =

∫
L

[
1

4πε0

q′

r2
r̂

]
· [̂rdr+ θ̂rdθ+ φ̂r sin θdφ] =

q′

4πε0

∫ rb

ra

dr

r2
= − 1

4πε0

q′

r

∣∣∣∣rb
r=ra

.

(A.14)

The line integral only depends on the end points. A closed loop evaluates to zero∮
L

E · dL = 0 (A.15)

and the curl theorem implies

∇× E = 0. (A.16)

A.1.3 Scalar Potential

Line integrals of electrostatic fields only depend on the end points, not the path.

Thus a scalar potential function can be defined relative to some reference point r0

V (r) ≡ −
∫ r

r0

E(r′) · dL′. (A.17)

Subtract V evaluated at ra from rb, swap limits of integration, and combine integrals

V (rb)− V (ra) = −
∫ rb

r0

E · dL′ +
∫ ra

r0

E · dL′ = −
∫ rb

ra

E · dL′. (A.18)
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Compare this to the gradient theorem to identify

E = −∇V. (A.19)

Insert this into Gauss’s law to derive Poisson’s equation

∇2V = − ρ
ε0
. (A.20)

The scalar potential relative to infinity of a source electric point charge at r′ = 0 is

V (r) = −
∫ r

∞

[
1

4πε0

q′

r′2
r̂

]
· [̂rdr′] = − q′

4πε0

∫ r

∞

dr′

r′2
=

1

4πε0

q′

r
. (A.21)

Generalize this to arbitrary source positions

V (r) =
1

4πε0

q′

R
(A.22)

then to an arbitrary number of source charges

V (r) =
1

4πε0

∑
i

q′i
Ri

(A.23)

then to a continuous charge distribution

V (r) =
1

4πε0

∫
dq′

R
. (A.24)

In particular, the scalar potential for a volume charge density is

V (r) =
1

4πε0

∫
V

ρ(r′)

R
dV ′. (A.25)

A.1.4 Polarization

Taylor expand R−1 about the origin (see Vector Calculus Appendix)

1

R
=

1

r

∞∑
n=0

[
r′

r

]n
Pn(cos θ) (A.26)
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and insert this series into the equation for scalar potential of a volume charge density

V (r) =
1

4πε0

∞∑
n=0

1

r[n+1]

∫
V

[r′]nPn(cos θ)ρ(r′)dV ′. (A.27)

Expand the first few terms

V (r) =
1

4πε0

[
1

r

∫
V

ρdV ′ +
1

r2

∫
V

r′ cos θρdV ′ + . . .

]
. (A.28)

The first term is the potential of an electric monopole moment at the origin

Vmono(r) =
1

4πε0

Q

r
. (A.29)

The second term is the potential of an electric dipole moment at the origin

Vdi(r) =
1

4πε0

1

r2

∫
V

r′ cos θρdV ′. (A.30)

This equation can be cast into vector form by observing r′ cos θ = r̂ · r′

Vdi(r) =
1

4πε0

1

r2

∫
V

r̂ · r′ρdV ′ =
1

4πε0

1

r2
r̂ ·
∫
V

r′ρdV ′ =
1

4πε0

r̂

r2
· p (A.31)

and the electric dipole moment is defined as

p ≡
∫
V

r′ρ(r′)dV ′. (A.32)

Generalize the dipole potential to a point dipole at an arbitrary source position

V (r) =
1

4πε0

R̂

R2
· p (A.33)

then to a continuous electric dipole moment volume density with dp(r) = P(r)dV

V (r) =
1

4πε0

∫
V

R̂

R2
· P(r′)dV ′. (A.34)

Use vector identity ∇Rn = nRn−1R̂ to rewrite R̂/R2 = ∇′R−1

V (r) =
1

4πε0

∫
V

[∇′R−1] · P(r′)dV ′ (A.35)
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and integrate by parts by using product rule (3) and the divergence theorem

V (r) =
1

4πε0

∫
V

[∇′ · [R−1P]−R−1∇′ · P]dV ′ (A.36)

V (r) =
1

4πε0

∮
S

P · dS′

R
− 1

4πε0

∫
V

∇′ · P

R
dV ′. (A.37)

Compare these integrals to the scalar potential of a continuous charge distribution

V (r) =
1

4πε0

∮
S

σb
R
dS ′ +

1

4πε0

∫
V

ρb
R
dV ′ (A.38)

and define bound electric surface and volume charge densities as

σb = P · n̂ (A.39)

ρb = −∇ · P. (A.40)

Electric charge can be split into bound charge and free (not bound) charge

ρ = ρf + ρb. (A.41)

Insert this into Gauss’s law

∇ · E =
ρ

ε0
=

1

ε0
[ρf + ρb] =

1

ε0
[ρf −∇ · P] (A.42)

and isolate the free charge

∇ · [ε0E + P] = ρf . (A.43)

Define the D field as

D ≡ ε0E + P. (A.44)

Gauss’s law in matter in differential form is

∇ · D = ρf (A.45)

and in integral form is ∮
S

D · dS = Qf . (A.46)
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A.2 Magnetostatics

Continuity equation ∮
S

J · dS = −∂Q
∂t

(A.47)∫
V

∇ · JdV = − ∂

∂t

∫
V

ρdV = −
∫
V

∂ρ

∂t
dV (A.48)

∇ · J = −∂ρ
∂t

(A.49)

Magnetostatics

∇ · J = 0 (A.50)

A.2.1 Biot-Savart Law

Fm = qv ×B (A.51)

B(r) =
µ0

4π

∫
dI′ × R̂

R2
(A.52)

dI′ = I(r′)dL′ = K(r′)dS ′ = J(r′)dV ′ (A.53)

B(r) =
µ0

4π

∫
V

J(r′)× R̂

R2
dV ′ (A.54)

A.2.2 Divergence and Curl

Divergence of B

∇ · B =
µ0

4π

∫
V

∇ ·
[
J× R̂

R2

]
dV ′ =

µ0

4π

∫
V

[
R̂

R2
·∇× J− J ·∇× R̂

R2

]
dV ′ (A.55)

∇× J(r′) = 0

∇× [R̂/R2] = 0 (see vector calc review)

∇ · B = 0 (A.56)
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∫
V

∇ · BdV =

∫
V

0dV (A.57)∮
S

B · dS = 0 (A.58)

Curl of B

∇×B =
µ0

4π

∫
V

∇×

[
J× R̂

R2

]
dV ′ =

µ0

4π

∫
V

[
J

[
∇ · R̂

R2

]
− [J ·∇]

R̂

R2

]
dV ′ (A.59)

∇× [A×B] = A[∇ · B]−B[∇ · A]− [A ·∇]B + [B ·∇]A

∇ · [R̂/R2] = 4πδ(R)

− [J ·∇]
R̂

R2
= [J ·∇′] R̂

R2
(A.60)

x̂

∫
V

[J·∇′]Rx

R3
dV ′ = x̂

∫
V

[
∇′ ·

[
J
Rx

R3

]
− Rx

R3
∇′ · J

]
dV ′ = x̂

∮
S

J
Rx

R3
·dS′ = 0 (A.61)

∇ · [fA] = ∇f · A + f∇ · A ∫
V

[J ·∇]
R̂

R2
dV ′ = 0 (A.62)

∇×B =
µ0

4π

∫
V

J(r′)[4πδ(R)]dV ′ = µ0J(r) (A.63)

∇×B = µ0J (A.64)∫
S

[∇×B] · dS = µ0

∫
S

J · dS (A.65)

I =

∫
S

J · dS (A.66)

∮
L

B · dL = µ0I (A.67)

A.2.3 Vector Potential

B = ∇×A (A.68)
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There is no restriction on divergence of A, and for now it’s nice to get rid of it.

Suppose ∇ · Ao 6= 0. Add a gradient (doesn’t change the curl) A = A0 +∇λ

∇ · A = ∇ · A0 +∇2λ (A.69)

∇2λ = −∇ · A0 (A.70)

λ =
1

4π

∫
V

∇ · A0

R
dV ′ (A.71)

∇ · A = 0 (A.72)

Poisson’s equation x3

∇× [∇×A] = ∇∇ · A−∇2A = µ0J (A.73)

∇2A = −µ0J (A.74)

vector potential of current distribution

A(r) =
µ0

4π

∫
V

J(r′)

R
dV ′ (A.75)

1

R
=

1

r

∞∑
n=0

[
r′

r

]n
Pn(cos θ) (A.76)

A(r) =
µ0I

4π

∮
L

dL′

R
(A.77)

A.2.4 Magnetization

A(r) =
µ0I

4π

∞∑
n=0

1

r[n+1]

∮
L

[r′]nPn(cos θ)dL′ (A.78)

A(r) =
µ0I

4π

[
1

r

∮
L

dL′ +
1

r2

∮
L

r′ cos θdL′ +
1

r3

∮
L

r′2

2
[3 cos2 θ − 1]dL′ + . . .

]
(A.79)∮

L

dL′ = 0 (A.80)
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Amono(r) = 0 (A.81)

Adi(r) =
µ0

4π

I

r2

∮
L

r′ cos θdL′ (A.82)

r̂ · r′ = r′ cos θ∮
L

c · rdL =
∫
S
dS× c

Adi(r) =
µ0

4π

I

r2

∮
L

r̂ · r′dL′ =
µ0

4π

I

r2

[∫
S

dS′
]
× r̂ (A.83)

Adi(r) =
µ0

4π

m× r̂

r2
(A.84)

m ≡ I

∫
S

dS (A.85)

A(r) =
µ0

4π

m× R̂

R2
(A.86)

dm′ = M(r′)dV ′

A(r) =
µ0

4π

∫
V

M(r′)× R̂

R2
dV ′ (A.87)

[R̂/R2] = ∇′R−1

A(r) =
µ0

4π

∫
V

M×∇′ 1
R
dV ′ (A.88)

A(r) =
µ0

4π

∫
V

[
1

R
∇′ ×M−∇′ × M

R

]
dV ′ (A.89)∫

V
∇×AdV = −

∮
S

A× dS (see vec calc appendix)

A(r) =
µ0

4π

∫
V

∇′ ×M

R
dV ′ +

µ0

4π

∮
S

M× dS′

R
(A.90)

A(r) =
µ0

4π

∫
V

Jb
R
dV ′ +

µ0

4π

∮
S

Kb

R
dS ′ (A.91)

Jb = ∇×M (A.92)

Kb = M× n̂ (A.93)

J = Jf + Jb (A.94)
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∇×B = µ0[Jf + Jb] = µ0[Jf +∇×M] (A.95)

∇×
[

1

µ0

B−M

]
= Jf (A.96)

∇×H = Jf (A.97)

H ≡ 1

µ0

B−M (A.98)

A.3 Electrodynamics

Define emf as the closed line integral of force per charge

E ≡
∮
L

f · dL (A.99)

ΦB ≡
∫
S

B · dS (A.100)

dΦB = ΦB(t+ dt)− ΦB(t) =

∫
dS

B · dS (A.101)

dS = [vdt]× dL (A.102)

dΦB

dt
=

∮
L

B · [v × dL] (A.103)

dΦB

dt
= −

∮
L

[v ×B] · dL = −
∮
L

fmag · dL = −E (A.104)

E = −dΦB

dt
(A.105)

Faraday hypothesized a change in magnetic flux induces an electric field emf∮
L

E · dL = −dΦB

dt
. (A.106)

This is Faraday’s law in integral form. Expand the definition for magnetic flux∮
L

E · dL = − d

dt

∫
S

B · dS (A.107)

192



apply the curl theorem and swap the order of differentiation and integration∫
S

[∇× E] · dS = −
∫
S

∂B

∂t
· dS (A.108)

This equation has to hold for any surface S, so the integrands must be equal

∇× E = −∂B

∂t
. (A.109)

This is the differential form of Faraday’s law.

Maxwell recognized in electrodynamics the divergence of Ampere’s law doesn’t

necessarily equal zero because their are no constraints on ∇ · J

∇ · [∇×B] = µ0∇ · J (A.110)

0 6= µ0∇ · J (A.111)

Maxwell used the continuity equation and Gauss’s law

∇ · J = −∂ρ
∂t

= − ∂

∂t
∇ · [ε0E] (A.112)

to propose a consistent modification to Ampere’s law on theoretical grounds

∇×B = µ0J + ε0µ0
∂E

∂t
. (A.113)

This modification explains observation and couples the electric and magnetic fields.

A.3.1 Maxwell’s Equations

The differential form of Maxwell’s equations is

∇× E = −∂B
∂t

∇×B = µ0J + ε0µ0
∂E
∂t

∇ · E = ρ
ε0

∇ · B = 0

BCs:



n̂×∆E = 0

n̂×∆B = µ0K

n̂ · ∆E = σ
ε0

n̂ · ∆B = 0

(A.114)
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and the electromagnetic (Lorentz) force law is

f = E + v ×B. (A.115)

A.3.2 Maxwell’s Equations in matter

Electrodynamics in matter requires considering current of changing polarization den-

sity

Jp ≡
∂P

∂t
(A.116)

J = Jf + Jb + Jp = Jf +∇×M +
∂P

∂t
(A.117)

∇×B = µ0

[
Jf +∇×M +

∂P

∂t

]
+ ε0µ0

∂E

∂t
(A.118)

∇×
[

1

µ0

B−M

]
= Jf +

∂

∂t
[ε0E + P] (A.119)

∇×H = Jf +
∂D

∂t
(A.120)



∇× E = −∂B
∂t

∇×H = Jf + ∂D
∂t

∇ · D = ρf

∇ · B = 0

BCs:



n̂×∆E = 0

n̂×∆H = Kf

n̂ · ∆D = σf

n̂ · ∆B = 0

(A.121)

Auxiliary fields

D ≡ ε0E + P (A.122)

H ≡ 1

µ0

B−M (A.123)
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A.3.3 Symmetric Maxwell’s Equations in Matter

see forward model

∇× E = −Jmf − ∂B
∂t

∇×H = Jef + ∂D
∂t

∇ · D = ρef

∇ · B = ρmf

BCs:



n̂×∆E = −Kmf

n̂×∆H = Kef

n̂ · ∆D = σef

n̂ · ∆B = σmf

(A.124)

in (nonmagentoelectric) linear matter

∇× E = −Jmf − ∂
∂t

[µH]

∇×H = Jef + ∂
∂t

[εE]

∇ · [εE] = ρef

∇ · [µH] = ρmf

BCs:



n̂×∆E = −Kmf

n̂×∆H = Kef

n̂ · ∆[εE] = σef

n̂ · ∆[µH] = σmf

(A.125)

A.3.4 Time Harmonic Fields

see forward model

∇× Ẽ = −J̃mi − jωµ̃H̃

∇× H̃ = J̃ei + jωε̃Ẽ

∇ · [ε̃Ẽ] = ρ̃ei

∇ · [µ̃H̃] = ρ̃mi

BCs:



n̂×∆Ẽ = −K̃mi

n̂×∆H̃ = K̃ei

n̂ · ∆[ε̃Ẽ] = σ̃ei

n̂ · ∆[µ̃H̃] = σ̃mi

(A.126)

note in em review that in time harmonic formalism, dot product is no longer an

inner product, but an instruction of how to combine harmonic quantities dot products
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(and cross products) are rarely applied. carefully consider meaning every time dot

or cross product is applied. grad, div, and curl are real operators applied to complex

values, so act normally even on time harmonic quantities when in doubt, remember

the physical situation is to take the real part of all fields and then applying operations

A.4 Theorems

A.4.1 Uniqueness

Time Harmonic Fields in lossy materials (take limit in lossless case)
∇× E1 = −Jmi − jωµH1

∇×H1 = Jei + jωεE1


∇× E2 = −Jmi − jωµH2

∇×H2 = Jei + jωεE2

(A.127)


∇×∆E = −jωµ∆H

∇×∆H = jωε∆E

(A.128)

∇ · [∆E×∆H∗] = −jωµ∗ |∆H|2 + jωε |∆E|2 (A.129)∫
V

Re(∇ · [∆E×∆H∗])dV =

∫
V

Re(−jωµ∗ |∆H|2 + jωε |∆E|2)dV (A.130)

ε̃ ≡ ε+ κe/[jω] and µ̃ ≡ µ+ κm/[jω]∮
S

Re(∆E×∆H∗) · dS = −
∫
V

[κm |∆H|2 + κe |∆E|2]dV (A.131)

i feel like if i took the Im instead this would always hold even in lossless media...

1) n̂× E is specified on S, i.e. n̂×∆E = 0 on S

2) n̂×H is specified on S, i.e. n̂×∆H = 0 on S

3) S is partitioned into Si each of which has either n̂× E or n̂×H specified
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Note, Maxwell’s equations are not linearly independent, and neither are the BCs.

By knowing the tangential components of the fields on a surface, the normal compo-

nents can be deduced (how? continuity equation?).

A.4.2 Duality

Electromagnetic equations are symmetric in electric and magnetic quantities. Given

any electromagnetic equation, a dual equation is derived by making the substitutions

ε χe κe ρe Je E D P φe Ae

↓
µ χm κm ρm Jm H B µ0M φm Am

µ χm κm ρm Jm H B M φm Am

↓
ε χe κe −ρe −Je −E −D − 1

ε0
P −φe −Ae

(A.132)

A.4.3 Reciprocity

see forward model

note, need to first consider integration volume that encloses both current distri-

butions. then it can be broken into two disjoint integration volumes over currents if

desired (and as currently presented).

A.4.4 Image Theory

for PEC/PMC planes

r′ = r− 2n̂[n̂ · r] (A.133)

Je(r) = ∓Je(r
′)± 2n̂[n̂ · Je(r

′)] (A.134)

Jm(r) = ±Jm(r′)∓ 2n̂[n̂ · Jm(r′)] (A.135)
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for r · n̂ < 0

this is a type of equivalence theorem where the PEC/PMC is replaced by the

background medium and the BCs at the interface are satisfied.

A.4.5 Equivalence

see forward model

A.5 Radiation

This appendix derives the fields radiated by arbitrary source current distributions in

a homogenous linear isotropic medium.

A.5.1 Symmetric Potentials

Assume linear media.

E = Ee + Em (A.136)

H = He + Hm (A.137)

Assume isotropic homogeneous nonmagnetoelectric media.

Assume time harmonic formalism.

No magnetic sources 

∇× Ee = −jωµHe

∇×He = Jei + jωεEe

∇ · [εEe] = ρei

∇ · [µHe] = 0

(A.138)
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µHe = ∇×Ae (A.139)

∇× [Ee + jωAe] = 0 (A.140)

Ee + jωAe = −∇φe (A.141)

Ee = −∇φe − jωAe (A.142)

Impose Lorenz gauge

∇ · Ae + jωεµφe = 0 (A.143)

φe = − 1

jωεµ
∇ · Ae (A.144)

∇2Ae + k2Ae = −µJei (A.145)

∇2φe + k2φe = −ρei
ε

(A.146)

No electric sources 

∇× Em = −Jmi − jωµHm

∇×Hm = jωεEm

∇ · [εEm] = 0

∇ · [µHm] = ρmi

(A.147)

εEm = −∇×Am (A.148)

∇× [Hm + jωAm] = 0 (A.149)

Hm + jωAm = −∇φm (A.150)

Hm = −∇φm − jωAm (A.151)

Impose Lorenz gauge

∇ · Am + jωεµφm = 0 (A.152)

∇2Am + k2Am = −εJmi (A.153)

∇2φm + k2φm = −ρmi
µ

(A.154)
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A.5.2 Potentials due to Sources

∇2Ae + k2Ae = −µJei (A.155)

Jei = ẑJe0δ(r) (A.156)

∇2Aez + k2Aez = −µJe0δ(r) (A.157)

∇2 =
1

r2

∂

∂r
r2 ∂

∂r
(A.158)

Aez =
f(r)

r
(A.159)

∇2

[
f

r

]
=

1

r2

d

dr
r2 d

dr

[
f

r

]
=

1

r2

d

dr
r2

[
1

r

df

dr
− f

r2

]
=

1

r2

d

dr

[
r
df

dr
− f

]
=

1

r2

[
df

dr
+ r

d2f

dr2
− df

dr

]
=

1

r

d2f

dr2

(A.160)

1

r

d2f

dr2
+ k2f

r
= −µJe0δ(r) (A.161)

d2f

dr2
+ k2f = −µJe0rδ(r) (A.162)

f(r) = C1e
−jkr + C2e

jkr (A.163)

apply radiation BCs

f(r) = C1e
−jkr (A.164)

Aez(r) = C1
1

r
e−jkr (A.165)

∇ ·∇Aez + k2Aez = −µJe0δ(r) (A.166)∮
S

∇Aez · dS +

∫
V

k2AezdV = −
∫
V

µJe0δ(r)dV (A.167)
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∇Aez = r̂
d

dr

[
C1

1

r
e−jkr

]
= r̂C1

[
− 1

r2
− jk

r

]
e−jkr (A.168)∫

S

∇Aez · dS =

∫ 2π

0

∫ π

0

[
r̂C1

[
− 1

a2
− jk

a

]
e−jka

]
· [̂ra2 sin θdθdφ]

=

∫ 2π

0

∫ π

0

C1[−1− jka]e−jka sin θdθdφ

= C1[−1− jka]e−jka
∫ π

0

sin θdθ

∫ 2π

0

dφ

= C1[−1− jka]e−jka[2][2π]

(A.169)

∫
V

k2AezdV =

∫ 2π

0

∫ π

0

∫ a

0

k2

[
C1

1

r
e−jkr

]
[r2 sin θdrdθdφ]

=

∫ 2π

0

∫ π

0

∫ a

0

k2C1re
−jkr sin θdrdθdφ

= C1k
2

∫ a

0

re−jkrdr

∫ π

0

sin θdθ

∫ 2π

0

dφ

= C1k
2

∫ a

0

re−jkrdr[2][2π]

(A.170)

−
∫
V

µJe0δ(r)dV = −µJe0 (A.171)

C14π[−1− jka]e−jka + C14πk2

∫ a

0

re−jkrdr = −µJe0 (A.172)

lim
a→0

[
C14π[−1− jka]e−jka + C14πk2

∫ a

0

re−jkrdr = −µJe0
]

(A.173)

− C14π = −µJe0 (A.174)

C1 =
µJe0
4π

(A.175)

Aez = µJe0
1

4πr
e−jkr (A.176)

Ae = µJe0
1

4πr
e−jkr (A.177)

Ae = µJe0
1

4πR
e−jkR (A.178)

Ae = µ

∫
V

1

4πR
e−jkRJedV

′ (A.179)

Ae = µ

∫
V

G(r, r′)Je(r
′)dV ′ (A.180)
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G(r, r′) =
1

4πR
e−jkR (A.181)

Am = ε

∫
V

G(r, r′)3DJm(r′)dV ′ (A.182)

A.5.3 Fields due to Potentials

∇Rn = nRn−1R̂ (A.183)

∇e−jkR = e−jkR∇[−jkR] = −jke−jkRR̂ (A.184)

He =
1

µ
∇×Ae

=
1

µ
∇×

[
µ

∫
V

GJedV
′
]

=

∫
V

∇G× JedV
′

=

∫
V

∇
[

1

4πR
e−jkR

]
× JedV

′

(A.185)

∇[[4πR]−1e−jkR] = [4π]−1[[∇R−1]e−jkR +R−1[∇e−jkR]]

= [4π]−1[[−R−2R̂]e−jkR +R−1[−jke−jkRR̂]]

= −[4π]−1[jkR−1 +R−2]e−jkRR̂

= −G0R̂

(A.186)

G0 ≡ [4π]−1[jkR−1 +R−2]e−jkR (A.187)

He(r) = −
∫
V

G0R̂× Je(r
′)dV ′ (A.188)

Ee =
1

jωε
[∇×He − Je] (A.189)
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∇×He = ∇×
[
−
∫
V

G0R̂× JedV
′
]

= −
∫
V

∇× [G0R̂× Je]dV
′

= −
∫
V

[[∇[G0R
−1]]× [R× Je] +G0R

−1∇× [R× Je]]dV
′

(A.190)

∇[G0R
−1] = ∇[[4π]−1[jkR−2 +R−3]e−jkR]

= [4π]−1∇[[jkR−2 +R−3]e−jkR]

= [4π]−1[[∇[jkR−2 +R−3]]e−jkR + [jkR−2 +R−3][∇e−jkR]]

= [4π]−1[[−j2kR−3R̂− 3R−4R̂]e−jkR + [jkR−2 +R−3][−jke−jkRR̂]]

= [4π]−1[−j2kR−3 − 3R−4 + k2R−2 − jkR−3]e−jkRR̂

= [4π]−1[k2R−2 − j3kR−3 − 3R−4]e−jkRR̂

= −[4π]−1[−k2R−1 + j3kR−2 + 3R−3]e−jkRR−1R̂

= −G1R
−1R̂

(A.191)

G1 ≡ [4π]−1[−k2R−1 + j3kR−2 + 3R−3]e−jkR (A.192)

∇× [R× J] = R[∇ · J]− J[∇ · R]− [R ·∇]J + [J ·∇]R

= −J[∇ · R] + [J ·∇]R

= −J[3] + [J]

= −2J

(A.193)

R̂× [R̂× J] = R̂[R̂ · J]− J[R̂ · R̂] = R̂[R̂ · J]− J (A.194)
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∇×He = −
∫
V

[[−G1R
−1R̂]× [R× Je] +G0R

−1[−2Je]]dV
′

=

∫
V

[G1R̂× [R̂× Je] + 2G0R
−1Je]dV

′

=

∫
V

[G1[R̂[R̂ · Je]− Je] + 2G0R
−1Je]dV

′

=

∫
V

[[2G0R
−1 −G1]Je +G1R̂[R̂ · Je]]dV

′

=

∫
V

[G2Je +G1R̂[R̂ · Je]]dV
′

(A.195)

G2 ≡ [4π]−1[k2R−1 − jkR−2 −R−3]e−jkR (A.196)

Ee(r) =
1

jωε

∫
V

[G2Je(r
′) +G1R̂[R̂ · Je(r

′)]]dV ′ − 1

jωε
Je(r) (A.197)

Ee(r) =
1

jωε

∫
V

[G2Je(r
′) +G1R̂[R̂ · Je(r

′)]]dV ′ − 1

jωε
Je(r)

Em(r) =

∫
V

G0R̂× Jm(r′)dV ′

He(r) = −
∫
V

G0R̂× Je(r
′)dV ′

Hm(r) =
1

jωµ

∫
V

[G2Jm(r′) +G1R̂[R̂ · Jm(r′)]]dV ′ − 1

jωµ
Jm(r)

(A.198a)

(A.198b)

(A.198c)

(A.198d)

where

G0 ≡ [4π]−1[jkR−1 +R−2]e−jkR

G1 ≡ [4π]−1[−k2R−1 + j3kR−2 + 3R−3]e−jkR

G2 ≡ [4π]−1[k2R−1 − jkR−2 −R−3]e−jkR

(A.199a)

(A.199b)

(A.199c)

Sommerfeld Radiation

lim
r→∞

r[E + ηr̂×H] = 0 (A.200)

lim
r→∞

r[H− η−1r̂× E] = 0 (A.201)

where η =
√
µ/ε
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Appendix B

Computer Graphics Review

B.1 Projective Coordinates

Computer graphics relies on projective (homogeneous) coordinates for effi-

ciently transforming geometry. As the name suggests, projective coordinates rep-

resent geometry in Rn as the projection of higher dimensional geometry in Rn+1, in

a way like hands making shadow puppets on a wall.

A position vector r ∈ R3 can be represented as a column vector of 3 coordinates

w.r.t the standard basis. Equivalently it can be represented in projective coordinates

as a column vector in R4 with the same 3 coordinates and the last equal to 1

r =


x

y

z

⇔


x

y

z

1


. (B.1)

Projective position vectors are defined to be similar if they are scalar multiples

x

y

z

1


∼



hx

hy

hz

h


=



x′

y′

z′

h′


for h 6= 0. (B.2)

Direction vector n ∈ R3 − {0} can also be represented in projective coordinates by
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setting the last coordinate to 0

n =


nx

ny

nz

⇔


nx

ny

nz

0


∼



hnx

hny

hnz

0


=



n′x

n′y

n′z

0


for h 6= 0, n ∈ R3 − {0} (B.3)

Projective coordinates make explicit the difference between position and direction

vectors.

B.2 Transformation

The most general linear transformation from projective coordinates to projective

coordinates is the linear system of equations

x′ = M11x+M12y +M13z +M14h

y′ = M21x+M22y +M23z +M24h

z′ = M31x+M32y +M33z +M34h

h′ = M41x+M42y +M43z +M44h

. (B.4)

In matrix notation this is written as matrix multiplying vector

x′

y′

z′

h′


=



M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44





x

y

z

h


(B.5)

or more compactly as

r′ = Mr (B.6)
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where

M =



M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44


. (B.7)

Matrix M can transform many vectors at once by multiplying an augmented matrix

constructed from those vectors[
r′1 r′1 . . . r′n

]
= M

[
r1 r2 . . . rn

]
. (B.8)

Normal vectors are vectors orthogonal to a plane. They are represented by pro-

jective direction vectors, but transform differently than position vectors. Consider a

plane such that position vector r is in the plane and normal vector n is orthogonal

to the plane

r · n = 0. (B.9)

When r is transformed by matrix M, n must be transformed by matrix N to ensure

the transformed tangent and normal spaces stay orthogonal

[Mr] · [Nn] = 0 (B.10)

or in matrix notation

[Nn]T [Mr] = nTNTMr = 0. (B.11)

Assuming M is invertible, this is satisfied when NT = M−1 because of Eq. B.9. Thus

when position vectors are transformed by matrix M, normal vectors are transformed

by matrix N = [M−1]T

n′ = Nn where N = [M−1]T . (B.12)
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B.3 Transformation Library

Only a small number of linear transformations on projective coordinates are needed

to synthesize a computer graphics pipeline; scaling, rotation, and translation trans-

formations are useful for posing geometry; windowing transformations map between

axis-aligned rectangular regions; and orthographic and perspective transformations

determine the camera model. Complicated linear transformation can be synthesized

by composing these basic transformations. When this is impossible, a general linear

transformation can always be supplied.

The following sections are derived for projective position vectors, but the results

also apply to projective direction vectors. Projective normal vectors transform per

B.12

B.3.1 Scaling

Scaling transformations scale (stretch/compress) axis-aligned coordinates. This is

useful to specify the size of things. The matrix representation is easy to work out

Sxx

Syy

Szz

1


=



Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1





x

y

z

1


(B.13)
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where the scaling factors Sx, Sy, Sz scale their respective coordinates x, y, z. Isolating

the transformation matrix define the projection scaling matrix

Mscale3D(Sx, Sy, Sz) ≡



Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1


. (B.14)

This matrix is invertible if the scaling factors are non-zero.

B.3.2 Rotation

Rotation transformations rotate coordinates about an axis through the origin. There

are a variety of ways to parameterize a rotation in matrix notation. Regardless of

the parameterization, the rotation matrix elements can always be written as

R =


R11 R12 R13

R21 R22 R23

R31 R32 R33

 where det(R) = 1 (B.15)

therefore the projective rotation matrix is of the form

x′

y′

z′

1


=



R11 R12 R13 0

R21 R22 R23 0

R31 R32 R33 0

0 0 0 1





x

y

z

1


(B.16)

The axis-angle representation is developed here for its robustness and simplicity.

Consider the Rodrigues rotation formula, which describes the rotation of point r ∈ R3

about unit vector n̂ by angle θ with the coordinate-free equation

r′ = r‖ + r⊥ cos θ + n̂× r⊥ sin θ (B.17)
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where r has been decomposed into components parallel and orthogonal to the axis.

The parallel component r‖ in terms of the dot product is

r‖ = n̂(n̂ · r) = n̂n̂T r (B.18)

while the orthogonal component r⊥ is

r⊥ = r− r‖ = r− n̂n̂T r = (1− n̂n̂T )r. (B.19)

The cross product (a bilinear operation) is linear if one of the vectors is held constant,

and thus a cross product by this constant vector can be written as a matrix equation

u× v =


uyvz − uzvy

uzvx − uxvz

uxvy − uyvx

 =


0 −uz uy

uz 0 −ux

−uy ux 0

v = Mu×v. (B.20)

The rotation formula in matrix notation is thus

r′ = n̂n̂T r + (1− n̂n̂T )r cos θ + Mn̂×(1− n̂n̂T )r. sin θ (B.21)

Grouping the terms

r′ = (n̂n̂T (1− cos θ) + 1 cos θ + Mn̂× sin θ + 0)r (B.22)

and Explicitly write out the matrix elements

R =


nxnx nxny nxnz

nynx nyny nynz

nznx nzny nznz

 (1− cos θ) +


1 0 0

0 1 0

0 0 1

 cos θ +


0 −nz ny

nz 0 −nx

−ny nx 0

 sin θ

(B.23)
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and combine terms to get a rotation matrix function parameterized by an axis spec-

ified by a normal vector and an angle θ to rotate by

R(n̂, θ) =


n2
xC + cos θ nxnyC − nz sin θ nxnzC + ny sin θ

nynxC + nz sin θ n2
yC + cos θ nynzC − nx sin θ

nznxC − ny sin θ nznyC + nx sin θ n2
zC + cos θ

 (B.24)

C = 1− cos θ (B.25)

Embedding the 3D rotation matrix into a 4D matrix, define

Mrot3D(n̂, θ) =



n2
xC + cos θ nxnyC − nz sin θ nxnzC + ny sin θ 0

nynxC + nz sin θ n2
yC + cos θ nynzC − nx sin θ 0

nznxC − ny sin θ nznyC + nx sin θ n2
zC + cos θ 0

0 0 0 1


(B.26)

B.3.3 Translation

Translation transformations translate coordinates. A major benefit of homogeneous

coordinates is the ability to encode translations with linear transformations. Trans-

lations take the form 

x+ ∆x

y + ∆y

z + ∆z

1


=



1 0 0 ∆x

0 1 0 ∆y

0 0 1 ∆z

0 0 0 1





x

y

z

1


(B.27)
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Isolating the transformation matrix, define

Mtrans3D(∆x,∆y,∆z) ≡



1 0 0 ∆x

0 1 0 ∆y

0 0 1 ∆z

0 0 0 1


(B.28)

B.3.4 Windowing

Windowing transformations map one axis-aligned rectangular region to another axis-

aligned rectangular region. This transformation is used to build projection matrices,

and map output to pixels.

The windowing transformation is constructed from a sequence of simpler trans-

formations; first translate the starting region to the origin, then scale the region to

reshape it, and finally translate the region to the final position. Specifically (in 2D)

Mwin2D = Mtrans2D(x′0, y
′
0)Mscale2D

(
x′1 − x′0
x1 − x0

,
y′1 − y′0
y1 − y0

)
Mtrans2D(−x0,−y0) (B.29)

Expanding the matrix definitions and simplifying

Mwin2D =


1 0 x′0

0 1 y′0

0 0 1



x′1−x′0
x1−x0 0 0

0
y′1−y′0
y1−y0 0

0 0 1




1 0 −x0

0 1 −y0

0 0 1

 (B.30)

Mwin2D =


1 0 x′0

0 1 y′0

0 0 1



x′1−x′0
x1−x0 0 −x0

x′1−x′0
x1−x0

0
y′1−y′0
y1−y0 −y0

y′1−y′0
y1−y0

0 0 1

 (B.31)
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Mwin2D =


x′1−x′0
x1−x0 0 x′0 − x0

x′1−x′0
x1−x0

0
y′1−y′0
y1−y0 y′0 − y0

y′1−y′0
y1−y0

0 0 1

 (B.32)

results in

Mwin2D =


x′1−x′0
x1−x0 0

x′0x1−x0x′1
x1−x0

0
y′1−y′0
y1−y0

y′0y1−y0y′1
y1−y0

0 0 1

 (B.33)

Generalizing to 3D, define

Mwin3D(x0, x1, y0, y1, z0, z1, x
′
0, x
′
1, y
′
0, y
′
1, z
′
0, z
′
1) ≡



x′1−x′0
x1−x0 0 0

x′0x1−x0x′1
x1−x0

0
y′1−y′0
y1−y0 0

y′0y1−y0y′1
y1−y0

0 0
z′1−z′0
z1−z0

z′0z1−z0z′1
z1−z0

0 0 0 1


(B.34)

B.3.5 Orthographic Projection

Orthographic projection is a special windowing transformation that maps an axis-

aligned rectangular region of world space to the unit cube

Mortho = Mwin3D(l, r, b, t, n, f,−1, 1,−1, 1,−1, 1) (B.35)

Evaluating this equation, define

Mortho(l, r, b, t, n, f) ≡



2
r−l 0 0 − r+l

r−l

0 2
t−b 0 − t+b

t−b

0 0 2
f−n −

f+n
f−n

0 0 0 1


(B.36)
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B.3.6 Perspective Projection

Perspective projection models a pinhole camera.

Consider 2D where z is depth. In this case, x needs to be divided by z.

xs = nxr
zr

zs = A+ B
zr

hs = 1

(B.37)


n = A+ B

n

f = A+ B
f

(B.38)

f = A+
B

f
=

[
n− B

n

]
+
B

f
= n+B

[
1

f
− 1

n

]
= n+B

n− f
nf

(B.39)

B = −nf (B.40)

A = n+ f (B.41)

xs = nxr
zr

zs = n+ f − nf
zr

hs = 1

(B.42)



xq = nxr

zq = zr[n+ f ]− nf

hq = zr

(B.43)


xs

zs

1

 =


xq
hq

zq
hq

1

 ∼

xq

zq

hq

 =


n 0 0

0 n+ f −nf

0 1 0



xr

zr

1

 (B.44)
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s ∼ q = Mperspect2Dr (B.45)

Mfrustum2D = Mortho2D(l, r, n, f)Mperspect2D(n, f) (B.46)

Mfrustum2D =


2
r−l 0 − r+l

r−l

0 2
f−n −

f+n
f−n

0 0 1



n 0 0

0 n+ f −nf

0 1 0

 (B.47)

Mfrustum2D =


2n
r−l −

r+l
r−l 0

0 f+n
f−n − 2nf

f−n

0 1 0

 (B.48)

Mfrustum(l, r, b, t, n, f) ≡



2n
r−l 0 − r+l

r−l 0

0 2n
t−b −

t+b
t−b 0

0 0 f+n
f−n − 2nf

f−n

0 0 1 0


(B.49)

B.4 Transformation Stack

Scaling, rotation, and translation transformations (in that order) are commonly used

to specify the pose (position and orientation) of spaces and geometry.

Mpose3D = Mtrans3DMrot3DMscale3D (B.50)

matrix stack

M = MwindowingMprojectionMmodelview (B.51)

1) apply modelview 2) compute lighting in eye coordinates 3) apply projection
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B.5 Clipping

n̂ · q = d (B.52)

give algorithm on how to cut triangle up. can either be pass, fail, one vertex passes,

or two vertices pass per face

B.6 Barycentric Coordinates

Let B = {r0, . . . , rN} be an affinely independent set of N+1 vectors in RM . Consider

r =
N∑
i=0

riβi where
N∑
i=0

βi = 1 (B.53)

Use the constraint to eliminate β0 from the linear combination. First solve for β0

β0 = 1−
N∑
i=1

βi (B.54)

then insert this result into the linear combination

r = r0

[
1−

N∑
i=1

βi

]
+

N∑
i=1

riβi (B.55)

and simplify to get

r− r0 =
N∑
i=1

[ri − r0] βi. (B.56)

The sum has the form of matrix-vector multiplication

r− r0 = Mβ (B.57)

where the columns of matrix M are the affine basis vectors

M =

[
r1 − r0 r2 − r0 . . . rN − r0

]
(B.58)
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and the elements of column vector β are the barycentric coefficients

β =

[
β1 β2 . . . βN

]T
. (B.59)

In the case where N = M , affine independence guarantees matrix M is invertible,

thus β has the unique solution

β = M−1[r− r0]. (B.60)

The case of N = M = 2 is of primary importance in this work and fully expanded

here. Matrix M ∈ R2×2

M =

[
r1 − r0 r2 − r0

]
. (B.61)

The inverse of a 2x2 matrix is

M−1 =
1

det(M)

 M22 −M12

−M21 M11

 (B.62)

so the solution to the matrix equation isβ1

β2

 =
1

(x1 − x0)(y2 − y0)− (x2 − x0)(y1 − y0)

 y2 − y0 −(x2 − x0)

−(y1 − y0) x1 − x0


x− x0

y − y0

 .
(B.63)

The constraint on the coefficients gives β0

β0 = 1− β1 − β2 (B.64)

while applying the inverse matrix gives the equations for β1

β1 =
(x− x0)(y2 − y0)− (x2 − x0)(y − y0)

(x1 − x0)(y2 − y0)− (x2 − x0)(y1 − y0)
(B.65)

and β2

β2 =
−(x− x0)(y1 − y0) + (x1 − x0)(y − y0)

(x1 − x0)(y2 − y0)− (x2 − x0)(y1 − y0)
. (B.66)
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Barycentric coordinates linearly interpolate the properties of vertices. Geometrically

the vector sum equals the linear interpolation of the vertex points

lerp2(p0, p1, p2, β1, β2) ≡ p0(1− β1 − β2) + p1β1 + p2β2 (B.67)

B.7 Perspective Interpolation

Efficient rasterization requires iterating over pixels in screen coordinates. Trans-

forming vertices into screen coordinates and performing linear interpolation with

barycentric coordinates is part of rasterization.

r =
∑
i

riβi (B.68)

Apply the transformation matrix M to this equation

Mr =
∑
i

Mriβi (B.69)

to get clip coordinates

q =
∑
i

qiβi. (B.70)

Clip coordinates are transformed vertices before the projective divide.

Clip coordinates are similar to screen coordinates by the projective divide

q

h
=

∑
i qiβi∑
i hiβi

(B.71)

screen coordinates

s =
∑
i

siβ
′
i (B.72)

∑
i qiβi∑
i hiβi

=
∑
i

siβ
′
i (B.73)
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∑
i

qiβi =
∑
i

hiβi
∑
i

siβ
′
i (B.74)

∑
i

sihiβi =
∑
i

hiβi
∑
i

siβ
′
i (B.75)

Screen space barycentric coordinates

Consider the world-space linear interpolation of property p

p = p0 + t(p1 − p0) (B.76)

The line is defined by

r = r0 + t(r1 − r0) (B.77)

Mr = Mr0 + t(Mr1 −Mr0) (B.78)

q = q0 + t(q1 − q0) (B.79)

q

h
=

q0 + t(q1 − q0)

h0 + t(h1 − h0)
(B.80)

s = s0 + u(s1 − s0) (B.81)

q0 + t(q1 − q0)

h0 + t(h1 − h0)
= s0 + u(s1 − s0) (B.82)

q0 + t(q1 − q0) = (h0 + t(h1 − h0))(s0 + u(s1 − s0)) (B.83)

h0s0 +t(h1s1−h0s0) = h0s0 +uh0(s1−s0)+t(h1−h0)s0 +tu(h1−h0)(s1−s0) (B.84)

th1(s1 − s0)− tu(h1 − h0)(s1 − s0) = uh0(s1 − s0) (B.85)

t(h1 − u(h1 − h0)) = uh0 (B.86)

t =
uh0

h1 + u(h0 − h1)
(B.87)

p = p0 + t(p1 − p0) (B.88)
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p = p0 +
uh0

h1 + u(h0 − h1)
(p1 − p0) (B.89)

p =
p0(h1 + u(h0 − h1)) + uh0(p1 − p0)

h1 + u(h0 − h1)
(B.90)

p =
p0h1 + u(p1h0 − p0h1)

h1 + u(h0 − h1)
(B.91)

p =

p0
h0

+ u
(
p1
h1
− p0

h0

)
1
h0

+ u
(

1
h1
− 1

h0

) (B.92)

u = β1

p =
lerp

(
p0
h0
, p1
h1
, β1

)
lerp

(
1
h0
, 1
h1
, β1

) (B.93)

p =
lerp2

(
p0
h0
, p1
h1
, p2
h2
, β1, β2

)
lerp2

(
1
h0
, 1
h1
, 1
h2
, β1, β2

) (B.94)

B.8 Face Rasterization

Algorithm 8: Triangle Rasterization

Result: Rasterize triangle

for x ∈ X do

for y ∈ Y do

(alpha, beta) = Rect2ToBary2(r0, r1, r2, x, y);

if α ∈ [0, 1] ∧ β ∈ [0, 1] then

p = lerp2(p0 / h0, p1 / h1, p2 / h2, alpha, beta);

h = lerp2(1 / h0, 1 / h1, 1 / h2, alpha, beta);

draw(x, y, p / h);

end

end

end
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note: this algo doesn’t try to fix double draw

B.9 Pipeline

• apply Mmodelview

• world space computation (e.g. light, ignored in this work)

• apply Mperspective

• clip

• projective divide

• apply Mviewport

• rasterize

B.10 Mesh Data Structure

V =

[
r0 r1 . . . rv

]
(B.95)

F =


v00 v01 . . . v0f

v10 v11 . . . v1f

v20 v21 . . . v2f

 (B.96)

NOTE THAT VF MESH SUCKS AT SUBDIVISION!!
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